995 research outputs found

    Outcomes of low-grade appendiceal mucinous neoplasms with remote acellular mucinous peritoneal deposits

    Get PDF
    Occasionally, low-grade appendiceal mucinous neoplasms (LAMN) present with mucinous peritoneal deposits (MPD) localized to periappendiceal tissue or diffused throughout the peritoneum. This study was aimed at evaluating the relevance of mucin cellularity for predicting outcomes of LAMN with remote MPD. The records of patients with LAMN and remote MPD who underwent initial assessment at a comprehensive cancer center from 1990 to 2015 were reviewed, and diagnostic procedures, treatments, and outcomes were analyzed. Of 48 patients included in the analysis, 19 had cellular MPD (CMPD) and 29 had acellular MPD. Of 33 patients who underwent cytoreductive surgery, 30 had a complete cytoreduction; the 3 patients with an incomplete cytoreduction had CMPD. In the follow-up period (median, 4 years), 6 patients died of the disease, all of whom had CMPD. Of 11 patients who had progression of disease, 10 had CMPD. Cellularity of remote MPD is an important determinant of disease outcome in LAMN. Approaches such as active surveillance may have a role in selected patients with LAMN and AMPD

    Diurnal and semidiurnal internal tide energy flux at a continental slope in the South China Sea

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C03025, doi:10.1029/2007JC004418.Barotropic (surface) and baroclinic (internal) tides were measured at four mooring sites during a field investigation of acoustic propagation characteristics and physical oceanography in the northern South China Sea. The mooring positions were in a line moving up the shallow portion of a continental slope at water depths between 350 and 85 m. Using time series of temperature and velocity, at several depths, 1-month series of semidiurnal and diurnal species internal tidal energy flux vectors were computed for three sites, with a 14-day series computed for the fourth (shallow) site. The internal tides had a temporal signature that was not in complete accord with the barotropic tides, showing an enhancement of diurnal internal tides with respect to semidiurnal. Bathymetric slope, barotropic tidal fluid particle trajectories, and scale of generation site versus internal tide wavelength are investigated as possible causes of the differing response of the species.This work was funded by grants from the U.S. Office of Naval Research, Physical Oceanography, and Ocean Acoustics programs and by the Woods Hole Oceanographic Institution. LR acknowledges support from the Doherty Foundation

    Generation of internal waves by a supercritical stratified plume

    Get PDF
    The generation of internal waves by a propagating river plume is studied in the framework of a fully nonlinear nonhydrostatic numerical model. The vertical fluid stratification, parameters of tide, river discharge, and the bottom topography were taken close to those observed near the Columbia River mouth. It was found that in the beginning of the ebb tidal phase the river water intruding into the sea behaves as a surface jet stream. It collides with the stagnant shelf waters and sinks down in the area of the outer plume boundary, forming a head of the gravity current. In supercritical conditions which are normally realized at the first stage of the ebb tidal phase, internal waves are arrested in the head of the gravity current because their phase speed is smaller than the velocity of the plume. They are released and radiate from the plume when the speed of the decelerating front becomes smaller than the internal wave phase speed. This mechanism of the wave generation is sensitive to the stratification of the ambient shelf waters. It was found that dramatic decay of the buoyancy frequency profile from the surface to the bottom provides the most favorable conditions for the efficient disintegration of the head of the gravity current into a packet of internal waves and their fast separation from the plume. In the case when the fluid stratification on the shelf is close to monotonous, the disintegration of the head of the gravity current into a packet of solitary internal waves is not expected. Copyright 2009 by the American Geophysical Union

    Parametric subharmonic instability of the internal tide at 29°N

    Get PDF
    Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 17–28, doi:10.1175/JPO-D-11-0108.1.Observational evidence is presented for transfer of energy from the internal tide to near-inertial motions near 29°N in the Pacific Ocean. The transfer is accomplished via parametric subharmonic instability (PSI), which involves interaction between a primary wave (the internal tide in this case) and two smaller-scale waves of nearly half the frequency. The internal tide at this location is a complex superposition of a low-mode waves propagating north from Hawaii and higher-mode waves generated at local seamounts, making application of PSI theory challenging. Nevertheless, a statistically significant phase locking is documented between the internal tide and upward- and downward-propagating near-inertial waves. The phase between those three waves is consistent with that expected from PSI theory. Calculated energy transfer rates from the tide to near-inertial motions are modest, consistent with local dissipation rate estimates. The conclusion is that while PSI does befall the tide near a critical latitude of 29°N, it does not do so catastrophically.This work was sponsored by NSF OCE 04-25283.2013-07-0

    Role of the interval from completion of neoadjuvant therapy to surgery in postoperative morbidity in patients with locally advanced rectal cancer

    Get PDF
    Increasing the interval from completion of neoadjuvant therapy to surgery beyond 8 weeks is associated with increased response of rectal cancer to neoadjuvant therapy. However, reports are conflicting on whether extending the time to surgery is associated with increased perioperative morbidity. Patients who presented with a tumor within 15 cm of the anal verge in 2009-2015 were grouped according to the interval between completion of neoadjuvant therapy and surgery: < 8 weeks, 8-12 weeks, and 12-16 weeks. Among 607 patients, the surgery was performed at < 8 weeks in 317 patients, 8-12 weeks in 229 patients, and 12-16 weeks in 61 patients. Patients who underwent surgery at 8-12 weeks and patients who underwent surgery at < 8 weeks had comparable rates of complications (37% and 44%, respectively). Univariable analysis identified male sex, earlier date of diagnosis, tumor location within 5 cm of the anal verge, open operative approach, abdominoperineal resection, and use of neoadjuvant chemoradiotherapy alone to be associated with higher rates of complications. In multivariable analysis, male sex, tumor location within 5 cm of the anal verge, open operative approach, and neoadjuvant chemoradiotherapy administered alone were independently associated with the presence of a complication. The interval between neoadjuvant therapy and surgery was not an independent predictor of postoperative complications. Delaying surgery beyond 8 weeks from completion of neoadjuvant therapy does not appear to increase surgical morbidity in rectal cancer patients

    Direct breaking of the internal tide near topography : Kaena Ridge, Hawaii

    Get PDF
    Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 380-399, doi:10.1175/2007JPO3728.1.Barotropic to baroclinic conversion and attendant phenomena were recently examined at the Kaena Ridge as an aspect of the Hawaii Ocean Mixing Experiment. Two distinct mixing processes appear to be at work in the waters above the 1100-m-deep ridge crest. At middepths, above 400 m, mixing events resemble their open-ocean counterparts. There is no apparent modulation of mixing rates with the fortnightly cycle, and they are well modeled by standard open-ocean parameterizations. Nearer to the topography, there is quasi-deterministic breaking associated with each baroclinic crest passage. Large-amplitude, small-scale internal waves are triggered by tidal forcing, consistent with lee-wave formation at the ridge break. These waves have vertical wavelengths on the order of 400 m. During spring tides, the waves are nonlinear and exhibit convective instabilities on their leading edge. Dissipation rates exceed those predicted by the open-ocean parameterizations by up to a factor of 100, with the disparity increasing as the seafloor is approached. These observations are based on a set of repeated CTD and microconductivity profiles obtained from the research platform (R/P) Floating Instrument Platform (FLIP), which was trimoored over the southern edge of the ridge crest. Ocean velocity and shear were resolved to a 4-m vertical scale by a suspended Doppler sonar. Dissipation was estimated both by measuring overturn displacements and from microconductivity wavenumber spectra. The methods agreed in water deeper than 200 m, where sensor resolution limitations do not limit the turbulence estimates. At intense mixing sites new phenomena await discovery, and existing parameterizations cannot be expected to apply.This work was funded by the National Science Foundation as a component of the Hawaii Ocean Mixing Program. Added support for FLIP was provided by the Office of Naval Research

    Finescale structure of the T-S relation in the eastern North Atlantic

    Get PDF
    Author Posting. © American Meteorological Society, 2005. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 35 (2005): 1437-1454, doi:10.1175/JPO2763.1.Distributions of temperature (T) and salinity (S) and their relationship in the oceans are the result of a balance between T–S variability generated at the surface by air–sea fluxes and its removal by molecular dissipation. In this paper the role of different motions in setting the cascade of T–S variance to dissipation scales is quantified using data from the North Atlantic Tracer Release Experiment (NATRE). The NATRE observational programs include fine- and microscale measurements and provide a snapshot of T–S variability across a wide range of scales from basin to molecular. It is found that microscale turbulence controls the rate of thermal dissipation in the thermocline. At this level the T–S relation is established through a balance between large-scale advection by the gyre circulation and small-scale turbulence. Further down, at the level of intermediate and Mediterranean waters, mesoscale eddies are the rate-controlling process. The transition between the two regimes is related to the presence of a strong salinity gradient along density surfaces associated with the outflow of Mediterranean waters. Mesoscale eddies stir this gradient and produce a rich filamentation and salinity-compensated temperature inversions: isopycnal stirring and diapycnal mixing are both required to explain the T–S relation at depth.Office of Naval Research under Award N00014-03-1-0354
    • …
    corecore