1,281 research outputs found

    Charge transport mechanism in networks of armchair graphene nanoribbons

    No full text

    The kinetic Alfvén-like nature of turbulent fluctuations in the Earth's magnetosheath: MMS measurement of the electron Alfvén ratio

    Get PDF
    The Magnetospheric MultiScale (MMS) mission is used to investigate turbulent fluctuations in the Earth's magnetosheath. The unique combination of multiple spacecraft and high time resolution plasma and electromagnetic field data provided by MMS makes it an ideal mission to study the nature of turbulence and energy conversion. The multiple spacecraft allow the determination of the wavevector directions and plasma frame frequencies of the fluctuations. Moreover, the particle velocities allow the determination of the ion and electron Alfvén ratios, giving an additional diagnostic to reveal the nature of the turbulent fluctuations. Finally, the currents (determined from plasma moments) and the three-dimensional electric field measurements allow the determination of a scale-dependent energy conversion rate. The results reveal that the fluctuations predominantly have kinetic Alfvén wave-like properties at wavenumbers near kpi~1 (where ρi is the ion gyroradius) and that Landau damping is an important pathway for converting energy

    HATS-1b: The First Transiting Planet Discovered by the HATSouth Survey

    Full text link
    We report the discovery of HATS-1b, a transiting extrasolar planet orbiting the moderately bright V=12.05 G dwarf star GSC 6652-00186, and the first planet discovered by HATSouth, a global network of autonomous wide-field telescopes. HATS-1b has a period P~3.4465 d, mass Mp~1.86MJ, and radius Rp~1.30RJ. The host star has a mass of 0.99Msun, and radius of 1.04Rsun. The discovery light curve of HATS-1b has near continuous coverage over several multi-day periods, demonstrating the power of using a global network of telescopes to discover transiting planets.Comment: Submitted to AJ 10 pages, 5 figures, 6 table

    Probability density functions for the variable solar wind near the solar cycle minimum

    Get PDF
    Unconditional and conditional statistics are used for studying the histograms of magnetic field multiscale fluctuations in the solar wind near the solar cycle minimum in 2008. The unconditional statistics involves the magnetic data during the whole year in 2008. The conditional statistics involves the magnetic field time series split into concatenated subsets of data according to a threshold in dynamic pressure. The threshold separates fast-stream leading edge compressional and trailing edge uncompressional fluctuations. The histograms obtained from these data sets are associated with both multiscale (B) and small-scale (δB) magnetic fluctuations, the latter corresponding to time-delayed differences. It is shown here that, by keeping flexibility but avoiding the unnecessary redundancy in modeling, the histograms can be effectively described by a limited set of theoretical probability distribution functions (PDFs), such as the normal, lognormal, kappa, and log-kappa functions. In a statistical sense the model PDFs correspond to additive and multiplicative processes exhibiting correlations. It is demonstrated here that the skewed small-scale histograms inherent in turbulent cascades are better described by the skewed log-kappa than by the symmetric kappa model. Nevertheless, the observed skewness is rather small, resulting in potential difficulties of estimation of the third-order moments. This paper also investigates the dependence of the statistical convergence of PDF model parameters, goodness of fit, and skewness on the data sample size. It is shown that the minimum lengths of data intervals required for the robust estimation of parameters is scale, process, and model dependent. ©2015. American Geophysical Union. All Rights Reserved

    Possible coexistence of kinetic Alfvén and ion Bernstein modes in sub-ion scale compressive turbulence in the solar wind

    Get PDF
    We investigate compressive turbulence at sub-ion scales with measurements from the Magnetospheric MultiScale Mission. The tetrahedral configuration and high time resolution density data obtained by calibrating spacecraft potential allow an investigation of the turbulent density fluctuations in the solar wind and their three-dimensional structure in the sub-ion range. The wave-vector associated with the highest energy density at each spacecraft frequency is obtained by application of the multipoint signal resonator technique to the four-point density data. The fluctuations show a strong wave-vector anisotropy k⊥ k� where the parallel and perpendicular symbols are with respect to the mean magnetic-field direction. The plasma frame frequencies show two populations, one below the proton cyclotron frequency ω<ci consistent with kinetic Alfvén wave (KAW) turbulence. The second component has higher frequencies ω>ci consistent with ion Bernstein wave turbulence. Alternatively, these fluctuations may constitute KAWs that have undergone multiple wave-wave interactions, causing a broadening in the plasma frame frequencies. The scale-dependent kurtosis in this wavevector region shows a reduction in intermittency at the small scales which can also be explained by the presence of wave activity. Our results suggest that small-scale turbulence exhibits linear-wave properties of kinetic Alfvén and possibly ion-Bernstein (magnetosonic) waves. Based on our results, we speculate that these waves may play a role in describing the observed reduction in intermittency at sub-ion scales

    Surface-Specific Spectroscopy of Water at a Potentiostatically Controlled Supported Graphene Monolayer

    Get PDF
    Knowledge of the structure of interfacial water molecules at electrified solid materials is the first step toward a better understanding of important processes at such surfaces, in, e.g., electrochemistry, atmospheric chemistry, and membrane biophysics. As graphene is an interesting material with multiple potential applications such as in transistors or sensors, we specifically investigate the graphene-water interface. We use sum-frequency generation spectroscopy to investigate the pH- and potential-dependence of the interfacial water structure in contact with a chemical vapor deposited (CVD) grown graphene surface. Our results show that the SFG signal from the interfacial water molecules at the graphene layer is dominated by the underlying substrate and that there are water molecules between the graphene and the (hydrophilic) supporting substrate
    corecore