33 research outputs found

    Charge Neutrality of the Color-Flavor Locked Phase from the Low Energy Effective Theory

    Full text link
    We investigate the issue of charge neutrality of the CFLK0K^0 phase of dense quark matter using the low energy effective theory of high density QCD. We show that the local electric and color charge neutrality of the ground state in a homogeneous color superconducting medium follows from its dynamics. We also consider the situation of a spatially inhomogeneous medium, such as may be found in a neutron star core. We find that spatial inhomogeneity results in the generation of electric fields, and positrons/electrons may be present in the ground state. We estimate the concentration of charged leptons in the ground state to be ne∌102cm−3n_{e}\sim{10^2}{cm}^{-3} and consider their influence on the opacity of the medium with respect to the modified photons.Comment: typos corrected, this version to appear in PR

    Numerical Portrait of a Relativistic BCS Gapped Superfluid

    Full text link
    We present results of numerical simulations of the 3+1 dimensional Nambu - Jona-Lasinio (NJL) model with a non-zero baryon density enforced via the introduction of a chemical potential mu not equal to 0. The triviality of the model with a number of dimensions d>=4 is dealt with by fitting low energy constants, calculated analytically in the large number of colors (Hartree) limit, to phenomenological values. Non-perturbative measurements of local order parameters for superfluidity and their related susceptibilities show that, in contrast to the 2+1 dimensional model, the ground-state at high chemical potential and low temperature is that of a traditional BCS superfluid. This conclusion is supported by the direct observation of a gap in the dispersion relation for 0.5<=(mu a)<=0.85, which at (mu a)=0.8 is found to be roughly 15% the size of the vacuum fermion mass. We also present results of an initial investigation of the stability of the BCS phase against thermal fluctuations. Finally, we discuss the effect of splitting the Fermi surfaces of the pairing partners by the introduction of a non-zero isospin chemical potential.Comment: 41 pages, 19 figures, uses axodraw.sty, v2: minor typographical correction

    Quark and pion condensation in a chromomagnetic background field

    Full text link
    The general features of quark and pion condensation in dense quark matter with flavor asymmetry have been considered at finite temperature in the presence of a chromomagnetic background field modelling the gluon condensate. In particular, pion condensation in the case of a constant abelian chromomagnetic field and zero temperature has been studied both analytically and numerically. Under the influence of the chromomagnetic background field the effective potential of the system is found to have a global minimum for a finite pion condensate even for small values of the effective quark coupling constant. In the strong field limit, an effective dimensional reduction has been found to take place.Comment: 17 pages, 6 figure

    First observation of the decay Bˉs0→D0K∗0\bar{B}^0_s \to D^0 K^{*0} and a measurement of the ratio of branching fractions B(Bˉs0→D0K∗0)B(Bˉ0→D0ρ0)\frac{{\cal B}(\bar{B}^0_s \to D^0 K^{*0})}{{\cal B}(\bar{B}^0 \to D^0 \rho^0)}

    Get PDF
    The first observation of the decay Bˉs0→D0K∗0\bar{B}^0_s \to D^0 K^{*0} using pppp data collected by the LHCb detector at a centre-of-mass energy of 7 TeV, corresponding to an integrated luminosity of 36 pb−1^{-1}, is reported. A signal of 34.4±6.834.4 \pm 6.8 events is obtained and the absence of signal is rejected with a statistical significance of more than nine standard deviations. The Bˉs0→D0K∗0\bar{B}^0_s \to D^0 K^{*0} branching fraction is measured relative to that of Bˉ0→D0ρ0\bar{B}^0 \to D^0 \rho^0: B(Bˉs0→D0K∗0)B(Bˉ0→D0ρ0)=1.48±0.34±0.15±0.12\frac{{\cal B}(\bar{B}^0_s \to D^0 K^{*0})}{{\cal B}(\bar{B}^0 \to D^0 \rho^0)} = 1.48 \pm 0.34 \pm 0.15 \pm 0.12, where the first uncertainty is statistical, the second systematic and the third is due to the uncertainty on the ratio of the B0B^0 and Bs0B^0_s hadronisation fractions.Comment: 10 pages, 3 figures, submitted to Phys. Lett. B; ISSN 0370-269

    Prompt K_short production in pp collisions at sqrt(s)=0.9 TeV

    Get PDF
    The production of K_short mesons in pp collisions at a centre-of-mass energy of 0.9 TeV is studied with the LHCb detector at the Large Hadron Collider. The luminosity of the analysed sample is determined using a novel technique, involving measurements of the beam currents, sizes and positions, and is found to be 6.8 +/- 1.0 microbarn^-1. The differential prompt K_short production cross-section is measured as a function of the K_short transverse momentum and rapidity in the region 0 < pT < 1.6 GeV/c and 2.5 < y < 4.0. The data are found to be in reasonable agreement with previous measurements and generator expectations.Comment: 6+18 pages, 6 figures, updated author lis
    corecore