33 research outputs found
Charge Neutrality of the Color-Flavor Locked Phase from the Low Energy Effective Theory
We investigate the issue of charge neutrality of the CFL phase of dense
quark matter using the low energy effective theory of high density QCD. We show
that the local electric and color charge neutrality of the ground state in a
homogeneous color superconducting medium follows from its dynamics. We also
consider the situation of a spatially inhomogeneous medium, such as may be
found in a neutron star core. We find that spatial inhomogeneity results in the
generation of electric fields, and positrons/electrons may be present in the
ground state. We estimate the concentration of charged leptons in the ground
state to be and consider their influence on the
opacity of the medium with respect to the modified photons.Comment: typos corrected, this version to appear in PR
Numerical Portrait of a Relativistic BCS Gapped Superfluid
We present results of numerical simulations of the 3+1 dimensional Nambu -
Jona-Lasinio (NJL) model with a non-zero baryon density enforced via the
introduction of a chemical potential mu not equal to 0. The triviality of the
model with a number of dimensions d>=4 is dealt with by fitting low energy
constants, calculated analytically in the large number of colors (Hartree)
limit, to phenomenological values. Non-perturbative measurements of local order
parameters for superfluidity and their related susceptibilities show that, in
contrast to the 2+1 dimensional model, the ground-state at high chemical
potential and low temperature is that of a traditional BCS superfluid. This
conclusion is supported by the direct observation of a gap in the dispersion
relation for 0.5<=(mu a)<=0.85, which at (mu a)=0.8 is found to be roughly 15%
the size of the vacuum fermion mass. We also present results of an initial
investigation of the stability of the BCS phase against thermal fluctuations.
Finally, we discuss the effect of splitting the Fermi surfaces of the pairing
partners by the introduction of a non-zero isospin chemical potential.Comment: 41 pages, 19 figures, uses axodraw.sty, v2: minor typographical
correction
Quark and pion condensation in a chromomagnetic background field
The general features of quark and pion condensation in dense quark matter
with flavor asymmetry have been considered at finite temperature in the
presence of a chromomagnetic background field modelling the gluon condensate.
In particular, pion condensation in the case of a constant abelian
chromomagnetic field and zero temperature has been studied both analytically
and numerically. Under the influence of the chromomagnetic background field the
effective potential of the system is found to have a global minimum for a
finite pion condensate even for small values of the effective quark coupling
constant. In the strong field limit, an effective dimensional reduction has
been found to take place.Comment: 17 pages, 6 figure
First observation of the decay and a measurement of the ratio of branching fractions
The first observation of the decay using
data collected by the LHCb detector at a centre-of-mass energy of 7 TeV,
corresponding to an integrated luminosity of 36 pb, is reported. A
signal of events is obtained and the absence of signal is
rejected with a statistical significance of more than nine standard deviations.
The branching fraction is measured relative to
that of : , where the first uncertainty is statistical, the second systematic and
the third is due to the uncertainty on the ratio of the and
hadronisation fractions.Comment: 10 pages, 3 figures, submitted to Phys. Lett. B; ISSN 0370-269
Prompt K_short production in pp collisions at sqrt(s)=0.9 TeV
The production of K_short mesons in pp collisions at a centre-of-mass energy
of 0.9 TeV is studied with the LHCb detector at the Large Hadron Collider. The
luminosity of the analysed sample is determined using a novel technique,
involving measurements of the beam currents, sizes and positions, and is found
to be 6.8 +/- 1.0 microbarn^-1. The differential prompt K_short production
cross-section is measured as a function of the K_short transverse momentum and
rapidity in the region 0 < pT < 1.6 GeV/c and 2.5 < y < 4.0. The data are found
to be in reasonable agreement with previous measurements and generator
expectations.Comment: 6+18 pages, 6 figures, updated author lis