1,460 research outputs found

    Arthritis Is Developed in Borrelia-Primed And -Infected Mice Deficient of Interleukin-17

    Get PDF
    Interleukin-17 (IL-17) has been shown to participate in the development of Lyme arthritis in experimental mice. For example, neutralization of IL-17 with antibodies inhibits induction of arthritis in Borrelia-primed and -infected C57BL/6 wild-type mice. We hypothesized that mice lacking IL-17 would fail to develop Borrelia-induced arthritis. IL-17-deficient and wild-type C57BL/6 mice were primed with heat-inactivated Borrelia and then infected with viable spirochetes 3 weeks later. No swelling or major histopathological changes of the hind paws were detected in IL-17-deficient or wild-type mice that were primed with Borrelia or infected with viable spirochetes. By contrast, IL-17-deficient and wild-type mice that were primed and subsequently infected with heterologous Borrelia developed severe swelling and histopathological changes of the hind paws. In addition, Borrelia-primed and -infected IL-17-deficient mice exhibited elevated gamma-interferon (IFN-γ) levels in sera and increased frequencies of IFN-γ-expressing lymphocytes in popliteal lymph nodes compared to Borrelia-primed and -infected wild-type mice. These results demonstrate that IL-17 is not required for development of severe pathology in response to infection with Borrelia burgdorferi, but may contribute to disease through an interaction with IFN-γ

    Nucleation and growth of single wall carbon nanotubes

    Get PDF
    The nucleation and growth of single wall carbon nanotubes from a carbon-saturated catalytic particle surrounded by a single sheet of graphene is described qualitatively by using a very restricted number of elementary processes, namely Stone-Wales defects and carbon bi-interstitials. Energies of the different configurations are estimated by using a Tersoff energy minimization scheme. Such a description is compatible with a broad variety of size or helicity of the tubes. Several mechanisms of growth of the embryos are considered: one of them is made more favourable when the tubes embryos are arranged in an hexagonal network in the graphene plane. All the proposed mechanisms can be indefinitely repeated for the growth of the nanotubes.Comment: Solid state communications, in pres

    Reliable Peer-to-Peer Access for Italian Citizens to Digital Government Services on the Internet

    Get PDF
    In the delivery of e-government services to citizens it should be clear that the viewpoint cannot simply be the standard one of client-supplier commonly used to provide services on the Internet. In a modern society it has rather to be the peer-to-peer approach which is typical of democracies, where institutions are equal to citizens in front of the law. But this is not yet a widely accepted standpoint in digital government efforts going on in many advanced countries in the world. Italian government, in its ever increasing effort to provide citizens with easier access to online government services, has instead adopted and is pursuing this symmetric approach, which is going to represent a fundamental tool in the ongoing march towards e-democracy. In this paper we describe the organizations involved in the process and the Information Technology (IT) infrastructure enabling the effective management of the whole process while ensuring the mandatory security functions in a democratic manner. Organizational complexity lies in the distribution of responsibilities for the management of people’s personal data among the more than 8000 Italian Municipalities and the need of keeping a centralized control on all processes dealing with identity of people. Technical complexity stems from the need of efficiently supporting this distribution of responsibilities while ensuring, at the same time, interoperability of IT-based systems independent of technical choices of the organizations involved, and fulfillment of privacy constraints. The IT architecture defined for this purpose features a clear separation between security services, provided at an infrastructure level, and application services, exposed on the Internet as Web Services

    Band Structure and Quantum Conductance of Nanostructures from Maximally-Localized Wannier Functions: The Case of Functionalized Carbon Nanotubes

    Full text link
    We have combined large-scale, Γ\Gamma-point electronic-structure calculations with the maximally-localized Wannier functions approach to calculate efficiently the band structure and the quantum conductance of complex systems containing thousands of atoms while maintaining full first-principles accuracy. We have applied this approach to study covalent functionalizations in metallic single-walled carbon nanotubes. We find that the band structure around the Fermi energy is much less dependent on the chemical nature of the ligands than on the sp3sp^3 functionalization pattern disrupting the conjugation network. Common aryl functionalizations are more stable when paired with saturating hydrogens; even when paired, they still act as strong scattering centers that degrade the ballistic conductance of the nanotubes already at low degrees of coverage.Comment: To be published in Phys. Rev. Let

    First principle theory of correlated transport through nano-junctions

    Get PDF
    We report the inclusion of electron-electron correlation in the calculation of transport properties within an ab initio scheme. A key step is the reformulation of Landauer's approach in terms of an effective transmittance for the interacting electron system. We apply this framework to analyze the effect of short range interactions on Pt atomic wires and discuss the coherent and incoherent correction to the mean-field approach.Comment: 5 pages, 3 figure

    HBV vaccination with Fendrix is effective and safe in pre-dialysis CKD population

    Get PDF
    Background: Patients with chronic kidney disease have a poor response to hepatitis B vaccine due to the immunodeficiency conferred from chronic uremia. A recombinant HB vaccine containing an improved adjuvant system AS04 (HBV-AS04) has been manufactured but scarce evidence exists on HBV-AS04 use among patients with CKD. Aim: To assess efficacy and safety of an adjuvanted recombinant vaccine (HBV-AS04) in a large cohort of CKD patients at pre-dialysis stage (with susceptibility to HBV infection). Methods: Patients were prospectively enrolled to receive four 20-mcg doses of HBV-AS04 by intramuscular route (deltoid muscle) at months 1, 2, 3, and 4. Anti-HBs surface antibody concentrations were tested at intervals of 1, 2, 3, 4, and 12 months. Multivariate analyses were performed to assess the parameters, which predicted immunologic response to HBV-AS04 vaccine. Results: One hundred and seven patients were included and 102 completed the study. At completion of vaccine schedule, the frequency of responders (anti-HBs titers 65 10 mIU/mL) was 95% (97/102) (mean anti-HBs antibody titers, 688.9 \ub1 385 mIU/mL), according to per-protocol analysis. Serum haemoglobin levels were greater in responder than non- or low-responder patients to HBV-AS04 (P = 0.04) and this was confirmed by multivariate analysis. The seroprotection rate at month 50 was 88% (30/34) with lower anti-HBs antibody titers (218.5 \ub1 269.6 mIU/mL, P = 0.001). No major side effects were observed. Conclusions: Our prospective study performed in a real-world setting showed a high immunogenicity and safety of HBV-AS04 vaccine in patients with CKD not yet on maintenance dialysis. Studies provided with longer follow-ups are under way to assess the durability of seroprotection in responders

    Macroscopic polarization and band offsets at nitride heterojunctions

    Full text link
    Ab initio electronic structure studies of prototypical polar interfaces of wurtzite III-V nitrides show that large uniform electric fields exist in epitaxial nitride overlayers, due to the discontinuity across the interface of the macroscopic polarization of the constituent materials. Polarization fields forbid a standard evaluation of band offsets and formation energies: using new techniques, we find a large forward-backward asymmetry of the offset (0.2 eV for AlN/GaN (0001), 0.85 eV for GaN/AlN (0001)), and tiny interface formation energies.Comment: RevTeX 4 pages, 2 figure

    Anisotropy and NMR spectroscopy

    Get PDF
    Abstract: In this paper, different aspects concerning anisotropy in Nuclear Magnetic Resonance (NMR) spectroscopy have been reviewed. In particular, the relevant theory has been presented, showing how anisotropy stems from the dependence of internal nuclear spin interactions on the molecular orientation with respect to the external magnetic field direction. The consequences of anisotropy in the use of NMR spectroscopy have been critically discussed: on one side, the availability of very detailed structural and dynamic information, and on the other side, the loss of spectral resolution. The experiments used to measure the anisotropic properties in solid and soft materials, where, in contrast to liquids, such properties are not averaged out by the molecular tumbling, have been described. Such experiments can be based either on static low-resolution techniques or on one- and two-dimensional pulse sequences exploiting Magic Angle Spinning (MAS). Examples of applications of NMR spectroscopy have been shown, which exploit anisotropy to obtain important physico-chemical information on several categories of systems, including pharmaceuticals, inorganic materials, polymers, liquid crystals, and self-assembling amphiphiles in water. Solid-state NMR spectroscopy can be considered, nowadays, one of the most powerful characterization techniques for all kinds of solid, either amorphous or crystalline, and semi-solid systems for the obtainment of both structural and dynamic properties on a molecular and supra-molecular scale. Graphic abstract: [Figure not available: see fulltext.
    • …
    corecore