182 research outputs found

    Attractor-like dynamics in belief updating in schizophrenia

    Get PDF
    Subjects with a diagnosis of schizophrenia (Scz) overweight unexpected evidence in probabilistic inference: such evidence becomes 'aberrantly salient'. A neurobiological explanation for this effect is that diminished synaptic gain (e.g. hypofunction of cortical N-methyl-D-aspartate receptors) in Scz destabilizes quasi-stable neuronal network states (or 'attractors'). This attractor instability account predicts that i) Scz would overweight unexpected evidence but underweight consistent evidence, ii) belief updating would be more vulnerable to stochastic fluctuations in neural activity, and iii) these effects would correlate.Hierarchical Bayesian belief updating models were tested in two independent datasets (n=80 and n=167, male and female) comprising human subjects with schizophrenia, and both clinical and non-clinical controls (some tested when unwell and on recovery) performing the 'probability estimates' version of the beads task (a probabilistic inference task). Models with a standard learning rate, or including a parameter increasing updating to 'disconfirmatory evidence', or a parameter encoding belief instability were formally compared.The 'belief instability' model (based on the principles of attractor dynamics) had most evidence in all groups in both datasets. Two of four parameters differed between Scz and non-clinical controls in each dataset: belief instability and response stochasticity. These parameters correlated in both datasets. Furthermore, the clinical controls showed similar parameter distributions to Scz when unwell, but were no different to controls once recovered.These findings are consistent with the hypothesis that attractor network instability contributes to belief updating abnormalities in Scz, and suggest that similar changes may exist during acute illness in other psychiatric conditions.SIGNIFICANCE STATEMENTSubjects with a diagnosis of schizophrenia (Scz) make large adjustments to their beliefs following unexpected evidence, but also smaller adjustments than controls following consistent evidence. This has previously been construed as a bias towards 'disconfirmatory' information, but a more mechanistic explanation may be that in Scz, neural firing patterns ('attractor states') are less stable and hence easily altered in response to both new evidence and stochastic neural firing. We model belief updating in Scz and controls in two independent datasets using a hierarchical Bayesian model, and show that all subjects are best fit by a model containing a belief instability parameter. Both this and a response stochasticity parameter are consistently altered in Scz, as the unstable attractor hypothesis predicts

    A transgenic Camelina sativa seed oil effectively replaces fish oil as a dietary source of eicosapentaenoic acid in mice

    Get PDF
    Background: Fish currently supplies only 40% of the eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) required to allow all individuals globally to meet the minimum intake recommendation of 500 mg/d. Therefore, alternative sustainable sources are needed. Objective: The main objective was to investigate the ability of genetically engineered Camelina sativa (20% EPA) oil (CO) to enrich tissue EPA and DHA relative to an EPA-rich fish oil (FO) in mammals. Methods: Six-week-old male C57BL/6J mice were fed for 10 wk either a palm oil–containing control (C) diet or diets supplemented with EPA-CO or FO, with the C, low-EPA CO (COL), high-EPA CO (COH), low-EPA FO (FOL), and high-EPA FO (FOH) diets providing 0, 0.4, 3.4, 0.3, and 2.9 g EPA/kg diet, respectively. Liver, muscle, and brain were collected for fatty acid analysis, and blood glucose and serum lipids were quantified. The expression of selected hepatic genes involved in EPA and DHA biosynthesis and in modulating their cellular impact was determined. Results: The oils were well tolerated, with significantly greater weight gain in the COH and FOH groups relative to the C group (P < 0.001). Significantly lower (36–38%) blood glucose concentrations were evident in the FOH and COH mice relative to C mice (P < 0.01). Hepatic EPA concentrations were higher in all EPA groups relative to the C group (P < 0.001), with concentrations of 0.0, 0.4, 2.9, 0.2, and 3.6 g/100 g liver total lipids in the C, COL, COH, FOL, and FOH groups, respectively. Comparable dose-independent enrichments of liver DHA were observed in mice fed CO and FO diets (P < 0.001). Relative to the C group, lower fatty acid desaturase 1 (Fads1) expression (P < 0.005) was observed in the COH and FOH groups. Higher fatty acid desaturase 2 (Fads2), peroxisome proliferator–activated receptor α (Ppara), and peroxisome proliferator–activated receptor γ (Pparg) (P < 0.005) expressions were induced by CO. No impact of treatment on liver X receptor α (Lxra) or sterol regulatory element-binding protein 1c (Srebp1c) was evident. Conclusions: Oil from transgenic Camelina is a bioavailable source of EPA in mice. These data provide support for the future assessment of this oil in a human feeding trial

    Functional Characterization of the Arabidopsis β-Ketoacyl-Coenzyme A Reductase Candidates of the Fatty Acid Elongase

    Get PDF
    In plants, very-long-chain fatty acids (VLCFAs; \u3e18 carbon) are precursors of sphingolipids, triacylglycerols, cuticular waxes, and suberin. VLCFAs are synthesized by a multiprotein membrane-bound fatty acid elongation system that catalyzes four successive enzymatic reactions: condensation, reduction, dehydration, and a second reduction. A bioinformatics survey of the Arabidopsis (Arabidopsis thaliana) genome has revealed two sequences homologous to YBR159w encoding a Saccharomyces cerevisiae β-ketoacyl reductase (KCR), which catalyzes the first reduction during VLCFA elongation. Expression analyses showed that both AtKCR1 and AtKCR2 genes were transcribed in siliques, flowers, inflorescence stems, leaves, as well as developing embryos, but only AtKCR1 transcript was detected in roots. Fluorescent protein-tagged AtKCR1 and AtKCR2 were localized to the endoplasmic reticulum, the site of fatty acid elongation. Complementation of the yeast ybr159Δ mutant demonstrated that the two KCR proteins are divergent and that only AtKCR1 can restore heterologous elongase activity similar to the native yeast KCR gene. Analyses of insertional mutants in AtKCR1 and AtKCR2 revealed that loss of AtKCR1 function results in embryo lethality, which cannot be rescued by AtKCR2 expression using the AtKCR1 promoter. In contrast, a disruption of the AtKCR2 gene had no obvious phenotypic effect. Taken together, these results indicate that only AtKCR1 is a functional KCR isoform involved in microsomal fatty acid elongation. To investigate the roles of AtKCR1 in postembryonic development, transgenic lines expressing RNA interference and overexpression constructs targeted against AtKCR1 were generated. Morphological and biochemical characterization of these lines confirmed that suppressed KCR activity results in a reduction of cuticular wax load and affects VLCFA composition of sphingolipids, seed triacylglycerols, and root glycerolipids, demonstrating in planta that KCR is involved in elongation reactions supplying VLCFA for all these diverse classes of lipids

    Towards the development of a sustainable soya bean-based feedstock for aquaculture

    Get PDF
    Soya bean (Glycine max (L.) Merr.) is sought after for both its oil and protein components. Genetic approaches to add value to either component are ongoing efforts in soya bean breeding and molecular biology programmes. The former is the primary vegetable oil consumed in the world. Hence, its primary usage is in direct human consumption. As a means to increase its utility in feed applications, thereby expanding the market of soya bean coproducts, we investigated the simultaneous displacement of marine ingredients in aquafeeds with soya bean-based protein and a high Omega-3 fatty acid soya bean oil, enriched with alpha-linolenic and stearidonic acids, in both steelhead trout (Oncorhynchus mykiss) and Kampachi (Seriola rivoliana). Communicated herein are aquafeed formulations with major reduction in marine ingredients that translates to more total Omega-3 fatty acids in harvested flesh. Building off of these findings, subsequent efforts were directed towards a genetic strategy that would translate to a prototype design of an optimal identity-preserved soya bean-based feedstock for aquaculture, whereby a multigene stack approach for the targeted synthesis of two value-added output traits, eicosapentaenoic acid and the ketocarotenoid, astaxanthin, were introduced into the crop. To this end, the systematic introduction of seven transgenic cassettes into soya bean, and the molecular and phenotypic evaluation of the derived novel events are described. Includes supplementary materials

    Towards the development of a sustainable soya bean-based feedstock for aquaculture

    Get PDF
    Soya bean (Glycine max (L.) Merr.) is sought after for both its oil and protein components. Genetic approaches to add value to either component are ongoing efforts in soya bean breeding and molecular biology programmes. The former is the primary vegetable oil consumed in the world. Hence, its primary usage is in direct human consumption. As a means to increase its utility in feed applications, thereby expanding the market of soya bean coproducts, we investigated the simultaneous displacement of marine ingredients in aquafeeds with soya bean-based protein and a high Omega-3 fatty acid soya bean oil, enriched with alpha-linolenic and stearidonic acids, in both steelhead trout (Oncorhynchus mykiss) and Kampachi (Seriola rivoliana). Communicated herein are aquafeed formulations with major reduction in marine ingredients that translates to more total Omega-3 fatty acids in harvested flesh. Building off of these findings, subsequent efforts were directed towards a genetic strategy that would translate to a prototype design of an optimal identity-preserved soya bean-based feedstock for aquaculture, whereby a multigene stack approach for the targeted synthesis of two value-added output traits, eicosapentaenoic acid and the ketocarotenoid, astaxanthin, were introduced into the crop. To this end, the systematic introduction of seven transgenic cassettes into soya bean, and the molecular and phenotypic evaluation of the derived novel events are described. Includes supplementary materials

    Rendering Protein-Based Particles Transiently Insoluble for Therapeutic Applications

    Get PDF
    Herein we report the fabrication of protein (bovine serum albumin, BSA) particles which were rendered transiently insoluble using a novel, reductively labile disulfide-based cross-linker. After being cross-linked, the protein particles retain their integrity in aqueous solution and dissolve preferentially under a reducing environment. Our data demonstrates that cleavage of the cross-linker leaves no chemical residue on the reactive amino group. Delivery of a self-replicating RNA was achieved via the transiently insoluble PRINT protein particles. These protein particles can provide new opportunities for drug and gene delivery

    Functional Desaturase Fads1 (Δ5) and Fads2 (Δ6) Orthologues Evolved before the Origin of Jawed Vertebrates

    Get PDF
    Long-chain polyunsaturated fatty acids (LC-PUFAs) such as arachidonic (ARA), eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids are essential components of biomembranes, particularly in neural tissues. Endogenous synthesis of ARA, EPA and DHA occurs from precursor dietary essential fatty acids such as linoleic and α-linolenic acid through elongation and Δ5 and Δ6 desaturations. With respect to desaturation activities some noteworthy differences have been noted in vertebrate classes. In mammals, the Δ5 activity is allocated to the Fads1 gene, while Fads2 is a Δ6 desaturase. In contrast, teleosts show distinct combinations of desaturase activities (e.g. bifunctional or separate Δ5 and Δ6 desaturases) apparently allocated to Fads2-type genes. To determine the timing of Fads1-Δ5 and Fads2-Δ6 evolution in vertebrates we used a combination of comparative and functional genomics with the analysis of key phylogenetic species. Our data show that Fads1 and Fads2 genes with Δ5 and Δ6 activities respectively, evolved before gnathostome radiation, since the catshark Scyliorhinus canicula has functional orthologues of both gene families. Consequently, the loss of Fads1 in teleosts is a secondary episode, while the existence of Δ5 activities in the same group most likely occurred through independent mutations into Fads2 type genes. Unexpectedly, we also establish that events of Fads1 gene expansion have taken place in birds and reptiles. Finally, a fourth Fads gene (Fads4) was found with an exclusive occurrence in mammalian genomes. Our findings enlighten the history of a crucially important gene family in vertebrate fatty acid metabolism and physiology and provide an explanation of how observed lineage-specific gene duplications, losses and diversifications might be linked to habitat-specific food web structures in different environments and over geological timescales

    Folate-Targeted Polymeric Nanoparticle Formulation of Docetaxel Is an Effective Molecularly Targeted Radiosensitizer with Efficacy Dependent on the Timing of Radiotherapy

    Get PDF
    Nanoparticle (NP) chemotherapeutics hold great potential as radiosensitizers. Their unique properties, such as preferential accumulation in tumors and their ability to target tumors through molecular targeting ligands, are ideally suited for radiosensitization. We aimed to develop a molecularly targeted nanoparticle formulation of docetaxel (Dtxl) and evaluate its property as a radiosensitizer. Using a biodegradable and biocompatible lipid-polymer NP platform and folate as a molecular targeting ligand, we engineered a folate-targeted nanoparticle (FT-NP) formulation of Dtxl. These NPs have sizes of 72±4 nm and surface charges of −42±8 mV. Using folate receptor over-expressing KB cells and folate receptor low HTB-43 cells, we showed folate-mediated intracellular uptake of NPs. In vitro radiosensitization studies initially showed FT-NP is less effective than Dtxl as a radiosensitizer. However, the radiosensitization efficacy is dependent on the timing of radiotherapy. In vitro radiosensitization conducted with irradiation given at the optimal time (24 hours) showed FT-NP Dtxl is as effective as Dtxl. When FT-NP Dtxl is compared to Dtxl and non-targeted nanoparticle (NT-NP) Dtxl in vivo, FT-NP was found to be significantly more effective than Dtxl or NT-NP Dtxl as a radiosensitizer. We also confirmed that radiosensitization is dependent on timing of irradiation in vivo. In summary, FT-NP Dtxl is an effective radiosensitizer in folate-receptor over-expressing tumor cells. Time of irradiation is critical in achieving maximal efficacy with this nanoparticle platform. To the best of our knowledge, our report is the first to demonstrate the potential of molecularly targeted NPs as a promising new class of radiosensitizers

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Functional Characterization of a Higher Plant Sphingolipid Δ4-Desaturase: Defining the Role of Sphingosine and Sphingosine-1-Phosphate in Arabidopsis

    Get PDF
    The role of Δ4-unsaturated sphingolipid long-chain bases such as sphingosine was investigated in Arabidopsis (Arabidopsis thaliana). Identification and functional characterization of the sole Arabidopsis ortholog of the sphingolipid Δ4-desaturase was achieved by heterologous expression in Pichia pastoris. A P. pastoris mutant disrupted in the endogenous sphingolipid Δ4-desaturase gene was unable to synthesize glucosylceramides. Synthesis of glucosylceramides was restored by the expression of Arabidopsis gene At4g04930, and these sphingolipids were shown to contain Δ4-unsaturated long-chain bases, confirming that this open reading frame encodes the sphingolipid Δ4-desaturase. At4g04930 has a very restricted expression pattern, transcripts only being detected in pollen and floral tissues. Arabidopsis insertion mutants disrupted in the sphingolipid Δ4-desaturase At4g04930 were isolated and found to be phenotypically normal. Sphingolipidomic profiling of a T-DNA insertion mutant indicated the absence of Δ4-unsaturated sphingolipids in floral tissue, also resulting in the reduced accumulation of glucosylceramides. No difference in the response to drought or water loss was observed between wild-type plants and insertion mutants disrupted in the sphingolipid Δ4-desaturase At4g04930, nor was any difference observed in stomatal closure after treatment with abscisic acid. No differences in pollen viability between wild-type plants and insertion mutants were detected. Based on these observations, it seems unlikely that Δ4-unsaturated sphingolipids and their metabolites such as sphingosine-1-phosphate play a significant role in Arabidopsis growth and development. However, Δ4-unsaturated ceramides may play a previously unrecognized role in the channeling of substrates for the synthesis of glucosylceramides
    • …
    corecore