72 research outputs found

    Onset of Benard-Marangoni Ferroconvection with Internal Heat Generation

    Get PDF
    The effect of internal heat generation on the onset of Benard-Marangoni convection in a horizontal ferrofluid layer heated from below in the presence of a uniform vertical magnetic field is studied. The lower boundary is rigid and the upper free boundary is assumed to be flat and undeformable. Both the boundaries are considered to be perfectly insulated to temperature perturbations and the resulting eigenvalue problem is solved numerically using the Galerkin technique as well as analytically by regular perturbation technique with wave number as a perturbation parameter. It is observed that the analytical results agree well with those obtained numerically. It is noted that the combined effect of magnetic Rayleigh number and dimensionless internal heat source strength is to reinforce together and to hasten the onset of Benard-Marangoni ferroconvection compared to their presence in isolation. In addition, the nonlinearity of fluid magnetization is found to have no influence on the criterion for the onset of ferroconvection. Some existing results are reproduced as particular cases from the present study

    Regulation of cilia abundance in multiciliated cells

    Get PDF
    Multiciliated cells (MCC) contain hundreds of motile cilia used to propel fluid over their surface. To template these cilia, each MCC produces between 100-600 centrioles by a process termed centriole amplification. Yet, how MCC regulate the precise number of centrioles and cilia remains unknown. Airway progenitor cells contain two parental centrioles (PC) and form structures called deuterosomes that nucleate centrioles during amplification. Using an ex vivo airway culture model, we show that ablation of PC does not perturb deuterosome formation and centriole amplification. In contrast, loss of PC caused an increase in deuterosome and centriole abundance, highlighting the presence of a compensatory mechanism. Quantification of centriole abundance in vitro and in vivo identified a linear relationship between surface area and centriole number. By manipulating cell size, we discovered that centriole number scales with surface area. Our results demonstrate that a cell-intrinsic surface area-dependent mechanism controls centriole and cilia abundance in multiciliated cells

    Effect of Cubic Temperature Profiles on Ferro Convection in a Brinkman Porous Medium

    Get PDF
    The effect of cubic temperature profiles on the onset ferroconvection in a Brinkman porous medium in presence of a uniform vertical magnetic field is studied. The lower and upper boundaries are taken to be rigid-isothermal and ferromagnetic. The Rayleigh-Ritz method with Chebyshev polynomials of the second kind as trial functions is employed to extract the critical stability parameters numerically. The results indicate that the stability of ferroconvection is significantly affected by cubic temperature profiles and the mechanism for suppressing or augmenting the same is discussed in detail. It is observed that the effect of Darcy number magnetic number and nonlinearity of the fluid magnetization parameter is to hasten, while an increase in the ratio of viscosity parameter and Biot number is to delay the onset of ferroconvection in a Brinkman porous medium. Further, increase in and decrease in is to decrease the size of the convection cells

    Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis

    Get PDF
    New therapeutic strategies are needed to combat the tuberculosis pandemic and the spread of multidrug-resistant (MDR) and extensively drug-resistant (XDR) forms of the disease, which remain a serious public health challenge worldwide1, 2. The most urgent clinical need is to discover potent agents capable of reducing the duration of MDR and XDR tuberculosis therapy with a success rate comparable to that of current therapies for drug-susceptible tuberculosis. The last decade has seen the discovery of new agent classes for the management of tuberculosis3, 4, 5, several of which are currently in clinical trials6, 7, 8. However, given the high attrition rate of drug candidates during clinical development and the emergence of drug resistance, the discovery of additional clinical candidates is clearly needed. Here, we report on a promising class of imidazopyridine amide (IPA) compounds that block Mycobacterium tuberculosis growth by targeting the respiratory cytochrome bc1 complex. The optimized IPA compound Q203 inhibited the growth of MDR and XDR M. tuberculosis clinical isolates in culture broth medium in the low nanomolar range and was efficacious in a mouse model of tuberculosis at a dose less than 1 mg per kg body weight, which highlights the potency of this compound. In addition, Q203 displays pharmacokinetic and safety profiles compatible with once-daily dosing. Together, our data indicate that Q203 is a promising new clinical candidate for the treatment of tuberculosis

    Bénard-Marangoni ferroconvection with magnetic field dependent viscosity

    Get PDF
    The effect of magnetic field dependent viscosity on the onset of Bénard-Marangoni ferroconvection in a horizontal layer of ferrofluid is investigated theoretically. The lower boundary is taken to be rigid with fixed temperature, while the upper free boundary at which temperature-dependent surface tension effect is considered is non-deformable and subject to a general thermal condition. The Rayleigh-Ritz method with Chebyshev polynomials of the second kind as trial functions is employed to extract the critical stability parameters numerically. The results show that the onset of ferroconvection is delayed with an increase in the magnetic field dependent viscosity parameter (Î) and Biot number (Bi) but opposite is the case with an increase in the value of magnetic Rayleigh number (Rm) and nonlinearity of magnetization (M3). Further, increase in Rm, M3, and decrease in Î and Bi is to decrease the size of the convection cells. © 2010

    Effects of Electric Field, Couple Stress and Permeability of Poorly conducting Polluted Fluid Through Composite Materials

    No full text
    Session 7: Nanocomposites & Multi-Functional Composites / Smart Materials (2

    Onset of marangoni-Bénard ferroconvection with temperature dependent viscosity

    No full text
    The effect of temperature dependent viscosity on the onset of Marangoni-Bénard ferroconvection under microgravity conditions in a horizontal ferrofluid layer in the presence of a uniform vertical magnetic field has been studied. The viscosity is considered to be varying exponentially with temperature. The lower rigid and the upper horizontal free boundaries are considered to be perfectly insulated to temperature perturbations. The resulting eigenvalue problem is solved numerically using the Galerkin technique as well as analytically by regular perturbation technique with wave number a as a perturbation parameter. It is observed that the analytical results agree well with those obtained numerically. The characteristics of stability of the system are strongly dependent on the viscosity parameter B. It is found that increase in the viscosity parameter B has a stabilizing effect on the onset of Marangoni-Bénard ferroconvection. Moreover, the nonlinearity of fluid magnetization M 3 is observed to have no consequence on the onset of convection in the case of fixed heat flux boundary conditions. © 2012 Springer Science+Business Media Dordrecht
    corecore