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ABSTRACT 

The effect of cubic temperature profiles on the onset ferroconvection in a Brinkman porous medium in 
presence of a uniform vertical magnetic field is studied. The lower and upper boundaries are taken to be rigid-
isothermal and ferromagnetic. The Rayleigh-Ritz method with Chebyshev polynomials of the second kind as 
trial functions is employed to extract the critical stability parameters numerically. The results indicate that the 
stability of ferroconvection is significantly affected by cubic temperature profiles and the mechanism for 
suppressing or augmenting the same is discussed in detail. It is observed that the effect of Darcy 
number ,Da magnetic number

1M and nonlinearity of the fluid magnetization parameter 
3M  is to hasten, while 

an increase in the ratio of viscosity parameter   and Biot number Bi  is to delay the onset of ferroconvection 

in a Brinkman porous medium. Further, increase in ,Bi 1,M 3M  and decrease in , Da is to decrease the size

of the convection cells. 

Keywords: Ferrofluid; Cubic temperature profiles; Ferro convection in Brinkman porous medium; Rayleigh-
Ritz technique.  

NOMENCLATURE 

a  overall horizontal wave number 

B


magnetic induction field 
Bi  Biot number  

,V HC  specific heat at constant volume and

magnetic field

H


 magnetic field intensity 
Da  Darcy number 

th heat transfer coefficient 

k permeability of the porous medium 
K  pyromagnetic coefficient 

M


 magnetization 

0M constant mean value of magnetization 

1M  magnetic number 

2M  magnetic parameter 

3M  nonlinearity of magnetization 

parameter
p  pressure 

q


 velocity vector  

mR magnetic Rayleigh number 

tR  thermal Rayleigh number 

T  temperature 

bT  basic temperature 

T average temperature  
W amplitude of vertical perturbed 

velocity

t  thermal expansion coefficient 


 

magnetic susceptibility 
  porosity of the porous medium 

  del operator 
2  Laplacian operator 
2
1  

horizontal Laplacian operator 
  thermal diffusivity 

  ratio of viscosities



C. E. Nanjundappa et al. / JAFM, Vol. 9, No. 4, pp. 1955-1962, 2016.  
 

1956 

  dynamic viscosity 

0μ  free space magnetic permeability of 

 vacuum 
  perturbed magnetic potential 

  amplitude of perturbed magnetic 
 potential 

  density 

0  reference density at 
0T  

  amplitude of perturbed temperature 
  growth rate 

 
1. INTRODUCTION  

Ferrofluids are stable colloidal suspensions of 
magnetic nano-particles suspended in a carrier 
liquid with low electrical conductivity. In the 
absence of an external magnetic field the 
magnetic moments of the particles are randomly 
orientated and there is no net macroscopic 
magnetization. In an external magnetic field, 
however, the magnetic moments of particles 
easily orient and a large (induced) magnetization 
prevails. There are two additional features in 
ferrofluids not found in ordinary fluids, the 
Kelvin force and the body couple (Rosensweig 
1985). In addition, in an external magnetic field, 
a ferrofluid exhibits additional rheological 
properties such as a field-dependent viscosity, 
special adhesion properties, and a non-Newtonian 
behavior, among others (Odenbach 2003). The 
theory of thermal convective instability in a 
ferrofluid layer began with Finlayson (1970) and 
extensively continued over the years (Stiles and 
Kagan 1990, Ganguly et al. 2004, Nanjundappa 
et al. 2008, Shivakumara et al. 2012, 
Nanjundappa et al. 2015).  

Thermal convection of ferrofluids saturating a 
layer of porous medium has also attracted 
considerable attention in the literature owing to 
its importance in controlled emplacement of 
liquids or treatment of chemicals and 
emplacement of geophysically imageable liquids 
into particular zones for subsequent imaging etc.  
Rosensweig et al. (1978) have studied 
experimentally the penetration of ferrofluids in 
the Hele-Shaw cell. The stability of the magnetic 
fluid penetration through a porous medium in 
high uniform magnetic field oblique to the 
interface is studied by Zhan and Rosensweig 
(1980). The thermal convection of ferrofluid 
saturating a porous medium in the presence of a 
vertical magnetic field is studied by 
Vaidyanathan et al. (1991) by employing the 
Brinkman equation. Qin and Chadam (1995) 
have carried out the non-linear stability analysis 
of ferroconvection in a porous layer by including 
the inertial effects to accommodate high velocity. 
The experimental results of the behavior of 
ferrofluids in porous media consisting of sands 
and sediments are presented in detail by Borglin 
et al. (2000). Sunil and Mahajan (2008) have 
used generalized energy method to study 
nonlinear convection in a magnetized ferrofluid 
saturated porous layer heated uniformly from 
below for the stress-free boundaries case. 
Shivakumara et al. (2009) have investigated 
theoretically the onset of convection in a layer of 

ferrofluid saturated porous medium for various 
types of velocity and temperature boundary 
conditions. Sunil et al. (2011) have investigated 
the effect of rotation in a magnetized ferrofluid 
with internal angular momentum, heated and 
soluted from below subject to transverse uniform 
magnetic field. Nanjundappa et al. (2012) have 
explored a model for penetrative ferroconvection 
via internal heat generation in a ferrofluid 
saturated porous layer using the Brinkman-
Lapwood extended Darcy equation with fluid 
viscosity different from effective viscosity to 
describe the flow of porous medium. 
Nanjundappa et al. (2013) have investigated the 
effect of penetrative ferroconvection via internal 
heat generation in a ferrofluid anisotropic porous 
layer theoretically using a Brinkman extended-
Darcy equation with fluid viscosity different 
from effective viscosity. Nanjundappa et al. 
(2014) have studied effect of cubic temperature 
profiles and MFD viscosity on Benard-
Marangoni ferroconvection with convective 
surface boundary conditions. Recently, Ram et 
al. (2014) have studied the effect of viscous 
dissipation and variable viscosity on rotationally 
symmetric ferrofluid flow in porous medium 
subjected to applied vertical magnetic field. 

The objective of the present paper is to make 
clear the effects of cubic temperature profiles on 
the onset of ferroconvection in a Brinkman 
porous medium in the presence of a uniform 
vertical magnetic field. In investigating the 
problem, the lower and upper boundaries are 
taken to be rigid-isothermal and ferromagnetic. 
The study helps in understanding control of 
ferroconvection by cubic temperature profiles in 
a Brinkman porous medium, which is useful in 
many heat transfer related problems. The 
resulting eigenvalue problem is solved 
numerically by employing the Rayleigh Ritz 
method with Chebyshev polynomials of the 
second kind as trial functions. 

2. MATHEMATICAL 
FORMULATION  

The system considered is an initially quiescent 
magnetic fluid saturated horizontal porous layer 
of characteristic thickness d  in the presence of 

an applied magnetic field 0H  in the vertical 

direction. The physical configuration is as shown 
in Fig. 1. The horizontal extension of the porous 
layer is sufficiently large so that edge effects may 
be neglected. A Cartesian co-ordinate system 

 , ,x y z  is used with the origin at the bottom of 
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the porous layer and z -axis is directed vertically 
upward. Gravity acts in the negative z -

direction, ˆg g k 


, where k̂  is the unit vector in 

the z -direction.  

 
Fig. 1. Physical Configuration. 

 

The basic governing equations for the flow of an 
incompressible ferrofluid are:   

Continuity Equation: 

0 q


                                                               (1)     

Momentum Equation: 

2

0 0

2

0

0

1 1
 ( . )

1 ( )

( )

p

+ ( )t

q
q q

t

M HT T g

q q
k


 

  



     
   

 



  



  

 

 
      (2) 

Energy/Temperature Equation: 

0 , 0
,

(1 )( )0 0
,

2

M DT
C HV H T DtV H

T M DH
C TS t T DtV H

k Tt

  

  

        
  

    
  

 



 
     (3) 

Maxwell’s Equations: 

0B 


, 0H 


 or H  


                  (4 a,b)

 
0 ( )B M H 

  
                                        (5) 

 ,
H

M M H T
H


                                  (6) 

Linearized Equation of Magnetic state: 

0 0( ) ( )M M H H K T T                        (7) 

where, the quantities have their predefined meaning 
as in Nomenclature. 

The basic state is assumed to be quiescent and it is 
given by  

0bq 


, ( )bp p z , ( ),bdT
f z

dz
 

 

  0
ˆ

1b
K z

H z H k



 
   



  0
ˆ

1b
K z

M z M k



 
   


                              (8) 

To study the stability of the system, we perturb all 
the variables in the form  

, ]

( ) , ( ) ]

[ , , , [ , ( )
', ( ) , b b

b

b

H M

H z H M z M

q p T q p z
p T z T   


 

 

   



                                                               (9) 

where, q


, p , T  , H 


 and M 


are perturbed 

variables and are assumed to be small. 

Substituting Eq. (9) into momentum Eq. (2), 
linearizing, eliminating the pressure term by 
operating curl twice, the z -component of the 
resulting equation is: 

22 20
0 1

2
2 20

0 1 1( ) ( ) ( )
1

tw g T
t k

K
K f z f z T

z

    



 



        


   

 

       

                                                                              (10) 

As before, substituting Eq. (9) into energy Eq. (3), 
linearizing, we obtain (after neglecting primes) 

2

1 2
0 0

0 0 0 0

2

( ) ( ) ( )
1

(11)
t

f z
K TTC KT C w

t t z

k T

   
  
       



      



where,
 

0 1 0 , 0 0 0( ) (1 )( )V H sC C H K C         
 

and 
0 2 0 , 0 0( ) V HC C H K      . 

Equations (4a, b), after substituting Eq. (9), may be 
written as (after dropping the primes) 

1

220
2

0
1  (1 ) 0M TK

H zz
  

  
 

      
.              (12) 

Since there are no physical mechanisms to 
introduce oscillatory motions, the principle of 
exchange of stability is assumed to be valid and 
hence the normal mode expansion of the dependent 
variables are taken in the form 

    )i ( x+m yw, T, φ W( ), ( ), ( ) e Lz z z      (13) 

where,   and m are wave numbers in the x  and y  

directions, respectively.  

Substituting Eq. (13) into Eqs. (10)-(12) and non-
dimensionalizing the variables by setting  

 
2

,

,

1
( *, *, *) , , ( )* ( ),

1  
* * , *

   v d

yx zx y z f z f z
d d d

d
W W

K dA





 

 

 
 
 

 


      

                                                              (14) 

where, 0 0/v    is the kinematic viscosity, 
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0 2/( )tk C   is the thermal diffusivity and 

0 1 0 2( ) /( )A C C   is the ratio of heat capacities, 

we obtain (after ignoring the asterisks) 

 

2 2 1 2 2 2

2

( ) ( )

( )

t

m

D a Da D a W a R

a R f z D

       

  
    (15) 

2 2
2(D a ) ( ) (1 ) Wf zM                       (16) 

2 2
3(D a ) 0.DM                                  (17) 

In the above equations, D  is the differential 
operator, a  the overall horizontal wave number, 

tR  

the thermal Rayleigh number, mR the magnetic 

Rayleigh number, -1Da  the inverse Darcy number, 
  the non-dimensional viscosity ratio parameter,

  
3M the measure of nonlinearity of fluid 

magnetization parameter. The typical value of 

2M for magnetic fluids with different carrier 

liquids turns out to be of the order of 610 and 
hence its effect is neglected as compared to unity. 
The non-dimensional basic temperature 
gradient ( )f z  is given by  

2
1 2 3( ) 2 ( 1) 3 ( 1) .f z a a z a z                      (18) 

Three types of basic temperature gradients are 
considered for discussion as mentioned below. 

Reference 
steady-state 
temperature 

gradients 

( )f z  1
*a  2

*a  3
*a  

Linear 1 1 0 0 

Cubic 1 23( 1)z   0 0 1 

Cubic 2 20.66 1.02( 1)z   0.66 0 0.34 

 

Equations (15)-(17) are solved using the following 
boundary conditions:  

0W DW              at 0z               

0W DW D Bi      at 1z         (19a, b) 

where, Bi  is the Biot number. The case 0Bi   
and Bi    respectively correspond to constant 
heat flux and isothermal conditions at the upper 
boundary. 

3. METHOD OF SOLUTION 

Equations (15)-(17) together with the corresponding 
boundary conditions constitute an eigenvalue 
problem with thermal Rayleigh number 

tR  as an 

eigenvalue. The resulting eigenvalue problem is 
solved numerically using the Rayleigh Ritz method.  
In this method, the test (weighted) functions are the 
same as the base (trial) functions. Accordingly, W , 

  and   are written as  





n

i
ii zWAW

1

)( , 

1

( )  ( )
n

i i
i

z C z


   ,                                             (20) 

1

( )  ( )
n

i i
i

z D z


      

where, the trial functions )(zWi , )z(i   and  

)z(i  will be generally chosen in such a way that 

they satisfy the respective boundary conditions, and 

iA , 
iC  and iD  are constants.  

We select the trial functions as 

4 3 2 *( 2 ) 1W z z z Ti i    ,   *(1 / 2) -1z z Ti i   ,
 

2 *( ) -1z z Ti i   .                                                (21) 

where, *
iT s  are the Chebyshev polynomials of the 

second kind.  Substituting Eq.(20) into Eqs.(15)-
(17), multiplying the resulting momentum Eq. (15) 
by )(zW j , energy Eq. (16) by )(zj  and  

magnetic potential Eq. (17) by )(zj , performing 

the integration by parts with respect to z  between 
0z   and 1z   and using the boundary conditions 

(19a, b), we obtain a system of linear homogeneous 
algebraic equations in 

iA , 
iC  and 

iD . A nontrivial 

solution to the system requires the characteristic 
determinant of the coefficient matrix must vanish 
and this leads to a relation in the form  

1
1 1 2 33

* * *, , , , ,( , , , , ) 0t Bi a a af R Da M M a         (22) 

The critical values of 
tcR are found as a function of 

wave number a  for various values of physical 
parameters.  

4 RESULTS AND DISCUSSIONS 

The linear stability analysis is carried out to 
investigate the effect of different forms of basic 
temperature profiles on the onset of ferroconvection 
in a ferrofluid Brinkmann porous layer. The 
bounding surfaces of the ferrofluid layer are 
considered to be rigid ferromagnetic and the 
resulting eigenvalue problem is solved numerically 
by employing the Galerkin technique. The results 
presented here are for i = j = 6 the order at which 
the convergence is achieved, in general.  

Figure 2(a) represents the variation of critical 
thermal Rayleigh number tcR  as a function of 

1Da  for various values of ratio of viscosity 
parameter .  It is observed that an increase in   is 
to delay the onset of ferroconvection. This is 
because increase in the value of   is related to 
increase in viscous effect which has the tendency to 
retard the fluid flow and hence higher heating is 
required for the onset of ferroconvection. 

 



C. E. Nanjundappa et al. / JAFM, Vol. 9, No. 4, pp. 1955-1962, 2016.  
 

1959 

0 20 40 60 80 100

1660

3320

4980

6640

8300

1

2

Da-1



R
tc

 Cubic 1
 Cubic 2
 Linear (a)

Fig. 2(a). Variation of tcR  as a function of 1Da  

for different values of  when 
1 2,M   

3 1M  and 2.Bi   

0 12 24 36 48 60

2.4

2.6

2.8

3.0

3.2





 Cubic 1
 Cubic 2
 Linear



Da-1

a
c

(b)

Fig. 2(b). Variation of 
ca as a function of 1Da  

for different values of  when 
1 2,M   
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In other words, higher value of   is more effective 
in suppression of ferroconvection in a ferrofluid 
saturated porous medium. It is seen that tcR  

increases with increasing 1Da  and hence its effect 
is to delay the onset of ferroconvection. For a fixed 
thickness of the porous layer, increase in 1Da  
leads to decrease in the permeability of the porous 
medium which in turn retards the flow of ferrofluid. 
Therefore, higher heating and hence higher value of 
thermal Rayleigh number is required for the onset 
of ferroconvection in a porous medium. Moreover, 

linear cubic2 cubic1( ) ( ) ( )tc tc tcR R R   suggesting 

cubic 1 basic temperature profile is more stabilizing 
than cubic 2 temperature profile and the linear 
temperature profile is the least stable. Thus, it is 
possible to control ferroconvection in a Brinkmann 
porous medium effectively by the choice of 
different forms of basic temperature profiles. The 
variation in critical wave number ac as a function of 

1Da  is elucidated in Fig. 2(b) for different forms 

of basic temperature profile with different values of 
 . It may be noted that the critical wave number ac 

increases with increasing 1Da . Moreover, an 
increase in the value of   is to decrease ac and 
hence its effect is to reduce the size of convection 
cells and also it is observed that 

linear cubic2 cubic1( ) ( ) ( ) .c c ca a a   

Figure 3(a), shows the plot of tcR as the function of 
1Da  for different values of Bi  and fixed values 

of  , 1M and 3M  with three different forms of 

basic temperature profiles. From the figure it is 
evident that an increase in the value of Bi  is to 
increase 

tcR  and thus its effect is to delay the onset 

of ferroconvection in a porous medium.  This may 
be attributed to the fact that with increasing Bi , the 
thermal disturbances can easily dissipate into the 
ambient surrounding due to a better convective heat 
transfer coefficient at the top surface and hence 
higher heating is required to make the system 
unstable. Fig. 3(b ) represents the variation of ac as 
a function of 1Da  for different values of Bi  and 

we note that as 1Da  increases the critical wave 
number and hence its effect is to contract the size of 
convection cells. 

Figure 4(a) reveals that critical thermal Rayleigh 
number 

tcR  as a function of 1Da  for different 

values of 
1M  with different forms of basic 

temperature profile. Physically, increase in 1M  

leads to either increase in destabilizing magnetic 
force or decrease in stabilizing viscous force on 
the system and hence it has a destabilizing effect 
on the system. A closer inspection of the figure 
further reveals that the magnetic force is to 
reinforce together with buoyancy force and to 
hasten the onset of ferroconvection when 
compared to their effect in isolation. Besides, it 
may be noted that the difference in the critical 
thermal Rayleigh numbers among different values 
of 

1M diminishes as the value of 
1M  increases. 

The variation in ac as a function of 1Da  is 
elucidated in Fig. 4(b) for different forms of basic 
temperature profile with different values of 

1M . It 

may be noted that the critical wave number ac 

increases with increasing 1Da . Moreover, an 
increase in the value of magnetic parameter  1M  

is to increase the value of critical wave number  ac  
and thus its effect is to increase the dimension of 
convection cells. 

Figure 5 shows the locus of critical thermal 
Rayleigh number 

tcR  and magnetic Rayleigh 

number 
mcR for different values of non-linearity of 

fluid magnetization, denoted through the 
parameter 3M , on the onset of ferroconvection in a 

Brinkman porous medium. In the figure, the regions 
above and below the curves, correspond 
respectively to unstable and stable ones. 
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It is observed that there is a strong coupling 
between tcR and 

mcR such that an increase in the 

one decreases the other. Thus, when the 
buoyancy force is predominant, the magnetic 
force becomes negligible and vice-versa. The 
stability curves are slightly convex and in the 
absence of buoyancy forces ( 0tcR  ), the 

instability sets in at higher values of mcR  

indicating the system is more stable when the 
magnetic forces alone are present. Fig. 5 
demonstrated that an increase in 3M  is to 

decrease tcR and mcR and thus it has a 

destabilizing effect on the system. This may be 
due to the fact that the application of magnetic 
field makes the ferrofluid to acquire larger 
magnetization which in turn interacts with the 
imposed magnetic field and releases more energy 

to drive the flow faster. Hence, the system becomes 
unstable with a smaller temperature gradient as the 
value of 3M  increases. Alternatively, a higher 

value of 3M  would arise either due to a larger 

pyromagnetic coefficient or larger temperature 
gradient. Both these factors are conducive for 
generating a larger gradient in the Kelvin body 
force field, possibly promoting the instability. The 

variation of ac as a function of 1Da  is shown in 
Fig. 6 for different values of 3M . From the figure, 

we note that increasing 3M  and 1Da   is to 

increase ac and hence to decrease the dimension of 
convection cells.  
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Fig. 4(a). Variation of tcR  as a function of 1Da  
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Fig. 6. Variation of ca  as a function of 1Da  

for different values of 3M  when 

1,  1 2M  and 2.Bi   

5. CONCLUSIONS 

The linear stability theory is used to investigate the 
effect of different forms of basic temperature profile 
on onset of ferroconvection in a Brinkman porous 
medium. The lower and upper boundaries is taken 
to be rigid-ferromagnetic and insulated to 
temperature perturbations. The Galerkin technique 
is used to find the eigenvalues as this technique is 
found to be more convenient to tackle different 
forms of basic temperature profiles. 

From the foregoing study, it is observed that  

(i) The cubic 1 basic temperature profile delays, 
while linear profile hastens the onset of 
ferroconvection. That is  

linear cubic2 cubic1( ) ( ) ( )tc tc tcR R R  .  

(ii) The critical thermal Rayleigh number 

tcR increases with an increase in the value of ratio 

of viscosity parameter  , Biot number Bi  and thus 
their effect is to delay the onset of ferroconvection. 

(iii) The effect of increase in the value of Darcy 
number Da , magnetic number 

1M  and non-

linearity of the fluid magnetization parameter 
3M  

is to reinforce together and to hasten the onset of 
ferroconvection. 

(iv) The magnetic and buoyancy forces are 
complementary with each other and the system is 
more stabilizing when the magnetic forces alone are 
present. 

(v) The effect of increasing Bi , 1Da , 
1M  and 

3M  as well as decrease in   is to increase the 

critical wave number 
ca  and hence their effect is to 

narrow the convection cells.  

(vi) The critical wave numbers 
ca  for cubic 1 basic 

temperature profile are higher than those of cubic 2 
basic temperature profile and linear temperature 
profiles. That is, 

linear cubic2 cubic1
( ) ( ) ( )c c ca a a  . 

(vii) It is possible to either augment or suppress 
ferroconvection in a porous medium by tuning the 
physical parameters of the system. 
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