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Abstract The effect of internal heat generation on the
onset of Benard-Marangoni convection in a horizontal
ferrofluid layer heated from below in the presence
of a uniform vertical magnetic field is studied. The
lower boundary is rigid and the upper free boundary
is assumed to be flat and undeformable. Both the
boundaries are considered to be perfectly insulated
to temperature perturbations and the resulting eigen-
value problem is solved numerically using the Galerkin
technique as well as analytically by regular perturba-
tion technique with wave number as a perturbation
parameter. It is observed that the analytical results
agree well with those obtained numerically. It is noted
that the combined effect of magnetic Rayleigh number
and dimensionless internal heat source strength is to
reinforce together and to hasten the onset of Benard-
Marangoni ferroconvection compared to their presence
in isolation. In addition, the nonlinearity of fluid mag-
netization is found to have no influence on the criterion
for the onset of ferroconvection. Some existing results
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are reproduced as particular cases from the present
study.
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Introduction

Ferrofluids contain single domain nanoparticles of
magnetic material stably suspended in a liquid carrier
with low electrical conductivity. Each particle is encap-
sulated by a monolayer of surfactant in order to prevent
particle coalescence due to magnetic attraction. The
average size of magnetic nanoparticles is about 10 nm.
Magnetic colloids have magnetic susceptibility which is
thousands times larger than that of natural materials.
Such fluids are found to have promising potential for
heat transfer applications in various areas of science,
technology, and nanotechnology because they can be
controlled by an external magnetic field (Rosensweig
1985; Bashtovoy et al. 1988, 1993).

The magnetization of ferromagnetic fluids depends
on the magnetic field, the temperature and the density
of the fluid. Any variation of these quantities can in-
duce a change in body force distribution in the fluid.
This leads to convection in ferrofluids in the presence
of magnetic field gradient, known as ferroconvection,
which is similar to buoyancy driven convection. Buoy-
ancy driven convection in a layer of ferrofluid heated
uniformly from below in the presence of a uniform
magnetic field has attracted researchers due to its
importance in heat transfer problems. The theory of
convective instability in a horizontal layer of ferrofluid
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heated uniformly from below began with Finlayson
(1970) and the topic covering various aspects has re-
ceived increasing importance over the years (Lalas
and Carmi 1971; Shliomis 1974; Gotoh and Yamada
1982; Stiles and Kagan 1990; Kaloni and Lou 2004).
In his review article, Odenbach (2004) has focussed
on recent developments in the field of rheological in-
vestigations of ferrofluids and their importance for the
general treatment of ferrofluids. The nonlinear stabil-
ity analysis for a magnetized ferrofluid layer heated
from below has been performed by Sunil and Amit
Mahjan (2008) for stress-free boundaries. Nanjundappa
and Shivakumara (2008) have considered variety of
velocity and temperature boundary conditions on the
onset of ferroconvection in an initially quiescent fer-
rofluid layer. Thermal convection of ferrofluids in the
presence of a uniform vertical magnetic field with the
boundary temperatures modulated sinusoidally about
some reference values is investigated by Singh and
Bajaj (2009). Recently, the effect of magnetic field
dependent (MFD) viscosity on the onset of convec-
tion in a ferromagnetic fluid layer heated from below
in the presence of a vertical magnetic field has been
investigated by considering the bounding surfaces are
either rigid-ferromagnetic or stress-free with constant
heat flux conditions (Nanjundappa et al. 2009).

Convection can also be induced by surface-tension
forces provided it is a function of temperature. In view
of the fact that heat transfer is greatly enhanced due
to convection, the magnetic convection problems offer
new possibilities for new applications in cooling with
motors, loud speakers, transmission lines, and other
equipment where magnetic field is already present.
If the ferrofluid layer has an upper surface open to
atmosphere then the instability is due to the combined
effects of the buoyancy as well as temperature-
dependent surface tension forces, known as Benard-
Marangoni ferroconvection. A limited number of
studies have addressed the effect of surface tension
forces on ferroconvection in a horizontal ferrofluid
layer. Linear and non-linear stability of combined
buoyancy–surface tension effects in a ferrofluid layer
heated from below has been analyzed by Qin and
Kaloni (1994). The linear stability analysis of a layer
of magnetic fluid with deformable free surface which is
heated uniformly from below and subject to a vertical
magnetic field by Weilepp and Brand (1996) has been
analyzed by considering the temperature dependence
of the surface tension and buoyancy. The coupling
between Marangoni and Rosensweig instabilities by
considering two semi-infinite incompressible and im-
miscible viscous fluids of infinite lateral extent in which
one of them is ferromagnetic and the other is a usual

Newtonian liquid is addressed by Weilepp and Brand
(2001). The effect of different forms of basic temper-
ature gradients on the onset of ferroconvection driven
by combined surface tension and buoyancy forces has
been discussed by Shivakumara et al. (2002), while
Hennenberg et al. (2005) have discussed Rayleigh-
Benard-Marangoni instability in a ferrofluid layer in
the presence of a weak vertical magnetic field nor-
mal to the boundaries. Shivakumara and Nanjundappa
(2006) have analyzed the onset of Marangoni ferro-
convection with different initial temperature gradients
with the object of understanding control of convection.
Recently, Bozhko and Putin (2009) have outlined the
thermomagnetic convection in magnetic fluids under
microgravity conditions.

The effect of quadratic basic state temperature gra-
dient caused by uniform internal heat generation plays
a decisive role in understanding control of convection.
Copious literature is available on coupled Benard-
Marangoni convection in a horizontal ordinary viscous
fluid layer with uniform distribution of internal heat
generation (Char and Chiang 1994; Wilson 1997;
Bachok and Arifin 2010 and references therein).
Nonetheless, its counterpart in a ferrofluid layer has
not received due attention in spite of its occurrence and
importance in many technological applications which
involve ferrofluids. In the present study, we have con-
sidered the problem of combined buoyancy and surface
tension driven convection in a horizontal ferromagnetic
fluid layer in the presence of uniform vertical mag-
netic field including the additional effect of internal
heat generation. Such a study helps in understanding
control of Benard-Marangoni ferroconvection due to
non-uniform temperature gradient arising due to in-
ternal heating, which is important in the applications
of ferrofluid technology. The lower rigid and upper
free boundary at which the temperature-dependent sur-
face tension forces are accounted for are considered
to be perfectly insulated to temperature perturbations.
The resulting eigenvalue problem is solved numerically
using the Galerkin technique. Besides, an analytical
formula is obtained for the critical Rayleigh/Marangoni
number by regular perturbation technique with wave
number as a perturbation parameter. The results ob-
tained from both numerical and analytical methods are
found to complement with each other suggesting the
analytical results obtained are exact.

Mathematical Formulation

We consider a horizontal layer of an electrically non-
conducting Boussinesq ferromagnetic fluid of thickness
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d with a uniformly distributed volumetric heat genera-
tion. A uniform magnetic field H0 is applied in the di-
rection normal to the boundaries of the ferrofluid layer.
The temperatures at the lower-rigid (z = 0) and upper-
free (z = d) boundaries are kept at Tl and Tu(< Tl),
respectively. A Cartesian co-ordinate system (x, y, z) is
used with the origin at the bottom of the surface and
the z-axis vertically upward. Gravity acts in the negative
z-direction, �g = −g k̂, where k̂ is the unit vector in the
z-direction. For most of the fluids the capillary number
is very small. Several investigators in the past have
followed this assumption in the study of Marangoni
problem and the free surface is assumed to be non-
deformable (zero capillary number). In analyzing the
problem it is postulated that the upper free surface is
flat and the parametric values are well within the range
of our basic assumption. At the upper free surface,
the surface tension σ is assumed to vary linearly with
temperature in the form

σ = σ0 − σT (T − T0) (1)

where σ0 is the unperturbed value and −σT is the rate of
change of surface tension with temperature T. The fluid
density ρ is assumed to vary linearly with temperature
in the form

ρ = ρ0 [1 − αt (T − T0)] (2)

where αt is the thermal expansion coefficient and ρ0 is
the density at T = T0.

The governing equations, in the Boussinesq approx-
imation, are [1]:

∇ · �V = 0 (3)

ρ0

[
∂ �V
∂t

+
( �V · ∇

) �V
]

= −∇p + ρ �g + μ0

( �M · ∇
) �H

+ μ∇2 �V (4)

[
ρ0CV,H − μ0 �H ·

(
∂ �M
∂T

)
V,H

]

× DT
Dt

+ μ0T

(
∂ �M
∂T

)
V,H

· D �H
Dt

= k1∇2T + Q (5)

∇ · �B = 0, ∇ × �H = 0 or �H = ∇ϕ (6a,b)

�B = μ0

( �M + �H
)

(7)

�M = [M0 + χ (H − H0) − K (T − T0)]
�H

H
(8)

where �V = (u, v, w) is the velocity vector, t the time,
p the pressure, �H the magnetic field intensity, �M the
magnetization, �B the magnetic induction, μ the dy-
namic viscosity, μ0 the magnetic permeability of vac-
uum, k1 the thermal conductivity, CV,H the specific heat
capacity at constant volume and magnetic field per unit
mass, Q the uniformly distributed volumetric heat gen-
eration within the ferrofluid layer, χ = (∂ M/∂ H)H0,T0

the magnetic susceptibility, K = −(∂ M/∂T)H0,T0 the
pyromagnetic co-efficient, ϕ the magnetic potential,
∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 the Laplacian opera-
tor, while M0 = M(H0, T0), H = | �H| and M = | �M|.

The basic state is quiescent and is given by

�Vb = 0 (9)

pb (z)= p0 − ρ0g z − ρ0αtg
[

Q z3

6 k1
− Q d z2

4 k1
+ β z2

2

]

− μ0 M0 K
1 + χ

[
Q z2

2 k1
− Q d z

2 k1
+ β z

]
− μ0 K2

(1 + χ)2

×
[

Q2 z4

8 k2
1

+ (2 β−Q d)
Q z3

4 k1
+

(
β− Q d

2 k1

)
z2

2

]

(10)

Tb (z) = − Q z2

2 k1
+ Q d z

2 k1
− β z + T0 (11)

�Hb (z) =
[

H0 − K
1 + χ

(
Q z2

2 k1
− Q d z

2 k1
+ β z

)]
k̂

(12)

�Mb (z) =
[

M0 + K
1 + χ

(
Q z2

2 k1
− Q d z

2 k1
+ β z

)]
k̂

(13)

where β = (Tl − Tu)/d = 	T/d and the subscript b
denotes the basic state. It may be noted that Tb (z),
�Hb (z) and �Mb (z) are distributed parabolically with the

fluid layer height due to the presence of internal heat
generation. However, for Q = 0 (i.e. in the absence of
internal heat generation) the basic state distributions
are linear in z.

To study the stability of the system, the basic state is
perturbed in the form

�V = �V ′, p = pb (z) + p′, T = Tb (z) + T ′,
�H = �Hb (z) + �H′ (14)
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where the primed quantities represent the perturbed
variables. Substituting Eq. 14 into Eq. 7, using Eqs. 6–8,
we get (after dropping the primes):

Hx + Mx = (1 + M0/H0) Hx

Hy + My = (1 + M0/H0) Hy

Hz + Mz = (1 + χ) Hz − K T (15)

where (Hx, Hy, Hz) and (Mx, My, Mz) are the (x, y, z)
components of the magnetic field intensity and magne-
tization, respectively. In obtaining the above equations
it is assumed that Kβ d << (1 + χ)H0 and K Q d2 <<

2(1 + χ)H0 k1.
Substituting Eq. 14 in 4, linearizing, eliminating the

pressure by operating curl twice, and retaining the z-
component of the resulting equation, we obtain (after
dropping the primes):(
ρ0

∂

∂t
−μ∇2

)
∇2w=−μ0 K

(
− Q z

k1
+ Q d

2 k1
− β

)

× ∂

∂t

(∇2
h ϕ

) + ρ0αtg ∇2
h T

+ μ0 K2

1 + χ

(
− Q z

k1
+ Q d

2 k1
− β

)
∇2

h T

(16)

where ∇2
h = ∂2/∂x2 + ∂2/∂y2 is the horizontal Lapla-

cian operator.
Equation 5, after using Eq. 14, and linearizing, takes

the form (after dropping the primes):

∂T
∂t

− μ0 T0 K
∂

∂t

(
∂ϕ

∂z

)
= k1 ∇2T +

[
1 − μ0 T0 K2

1 + χ

]

×
(

Q z
k1

− Q d
2 k1

+β

)
w (17)

where ρ0C0 = ρ0CV,H + μ0 H0 K and we have assumed
β d << T0.

Equation 6a,b, after substituting Eq. 14 and using
Eq. 15, may be written as (after dropping the primes)

(
1 + M0

H0

)
∇2

hϕ + (1 + χ)
∂2ϕ

∂z2
− K

∂T
∂z

= 0. (18)

The normal mode expansion of the dependent variables
is assumed in the form

{w, T, ϕ } = {W(z), 
(z), �(z) } exp
[
i (�x + my) + σ t

]
(19)

where � and m are wave numbers in the x and y
directions, respectively, and σ is the growth rate which
is complex.

On substituting Eq. 19 into Eqs. 16–18 and non-
dimensionalizing the variables by setting

(
x∗, y∗, z∗) =

( x
d

,
y
d

,
z
d

)
, W∗ = d

ν
W, 
∗ = κ

β v d

,

�∗ = (1 + χ) κ

K β v d2
�, t∗ = ν

d2
t (20)

where ν = μ/ρ0 is the kinematic viscosity and κ =
k1/ρ0C0 is the thermal diffusivity, we obtain (after ig-
noring the asterisks)[(

D2−a2
)−σ

](
D2−a2

)
W =− Rm a2 [NS (1 − 2z) − 1]

× (D�−
)+Rt a2 
 (21)

(
D2−a2−Pr σ

)

−Pr M2σ �= [NS (1 − 2 z) − 1]

× (1 − M2) W (22)

(
D2 − M3 a2

)
� = D
. (23)

Here D = d/dz is the differential operator,
a = √

�2 + m2 is the overall horizontal wave number,
Rt = g αtβ d4/ν κ is the thermal Rayleigh number, M1 =
μ0 K2β/(1 + χ)αtρ0g is the magnetic number, Rm =
Rt M1 = μ0 K2β2d4/(1 + χ)μ κ is the magnetic
Rayleigh number, M2 = μ0T2 K2/(1 + χ)ρ0C0 is
the magnetic parameter, M3 = (1 + M0/H0)/(1 + χ)

is the measure of nonlinearity of fluid magnetization
parameter, Pr = ν/κ is the Prandtl number and
NS = Q d/2 k1 β is the dimensionless heat source
strength. As propounded by Vidal and Acrivos (1966)
in the study of surface-tension driven convection
problem, it is not possible to prove the principle of
exchange of stability for the problem considered, in
general. However, in discussing a similar problem,
Weilepp and Brand (1996) have demonstrated
through their numerical calculations that there is
no oscillatory instability and convection sets in as
stationary convection. On physical arguments also it is
true that there is no mechanism to set up oscillatory
motion. Based on these observations, the principle of
exchange of stability is assumed to be valid for the
problem considered. Moreover, the typical value of M2

for magnetic fluids with different carrier liquids is of
the order of 10−6 and hence its effect is neglected as
compared to unity. Equations 21–23, after noting the
above facts, now become(

D2−a2
)2

W =− Rm a2 [NS (1 − 2 z) − 1] (D� − 
)

+ Rt a2 
 (24)



Microgravity Sci. Technol. (2011) 23:29–39 33

(
D2 − a2

)

 = [NS (1 − 2 z) − 1] W (25)

(
D2 − M3 a2

)
� = D
. (26)

It is considered that the lower boundary is rigid-
ferromagnetic, while the upper free boundary at which
the surface tension effects are accounted for is taken
to be non-deformable and flat. In addition, both the
boundaries are assumed to be perfectly insulated to
temperature perturbations. The boundary conditions
are then given by

W = DW = � = D
 = 0 at z = 0 (27)

W = D2W + Ma a2 
 = D� = D
 = 0 at z = 1

(28)

where Ma = σT 	T d/μ κ is the Marangoni number.
It may be noted that the boundary conditions for the
magnetic potential � considered are only the simpler
ones. The assumption D� = 0 on the top free sur-
face was used by Finlayson (1970) in his discussion
of the convective instability problem in a ferrofluid
layer for the free boundaries. This corresponds to the
case, where the magnetic susceptibility is very high
(i.e., χ → ∞). The assumption � = 0 on the bottom
rigid boundary was used by Gotoh and Yamada (1982).
This is a special case which can be attained when the
magnetic permeability of the solid boundary is much
higher than the magnetic permeability of the fluid.

Method of Solution

Equations 24–26 together with the boundary conditions
constitute an eigenvalue problem with Rt or Ma as
an eigenvalue. The eigenvalue problem is solved both
numerically using the Galerkin method as well as an-
alytically using a regular perturbation technique with
wave number as a perturbation parameter.

Solution by Galerkin Technique

The Galerkin method is used to solve the eigenvalue
problem as explained in the book by Finlayson (1972).
In this method, the test (weighted) functions are the

same as the base (trial) functions. Accordingly, W, 


and � are written as

W (z) =
n∑

i=1

Ai Wi (z), 
 (z) =
n∑

i=1

Bi 
i (z) and

�(z) =
n∑

i=1

Ci �i (z) (29)

where Ai, Bi and Ci are unknown constants to be
determined. The base functions Wi(z), 
i(z) and �i(z)

are generally chosen such that they satisfy the corre-
sponding boundary conditions but not the differential
equations. We select the trial functions as

Wi =
(
z4−5 z3/2+3 z2/2

)
T∗

i−1, 
i = z (1 − z/2) T∗
i−1,

�i = z2 (1 − 2 z/3) T∗
i−1 (30a)

where T∗
i

′s are the modified Chebyshev polynomi-
als. The above trial functions satisfy all the bound-
ary conditions except the natural one, namely D2W +
Ma a2 
 = 0 at z = 1 but the residual from this con-
dition is included as residual from the differential
equation. Substituting Eq. 29 into 24–26, multiplying
momentum Eq. 24 by W j(z), energy Eq. 25 by 
 j(z)

and magnetization Eq. 26 by � j(z); performing the
integration by parts with respect to z between z = 0 and
z = 1 and using the boundary conditions, we obtain a
system of linear homogeneous algebraic equations in
Ai, Bi and Ci. A nontrivial solution to the system re-
quires the characteristic determinant of the coefficient
matrix must vanish and this leads to a relation involving
the parameters Rt, Ma, Rm, M1, M3, Ns and a in the
form

f (Rt, Ma, Rm, M1, M3, Ns, a) = 0. (30b)

The critical values of Rtc or Mac are found as a function
of wave number a for various values of physical para-
meters. It is observed that the convergence is achieved
with six terms in the series expansion of Eq. 29.

Solution by Regular Perturbation Technique

Since the critical wave number is negligibly small when
the boundaries are perfectly insulated to temperature
perturbations (i.e., D
 = 0 at z = 0, 1), the eigenvalue
problem is also solved analytically using regular pertur-
bation technique with wave number a as a perturbation
parameter. Accordingly, the variables W, 
 and � are
expanded in powers of a2 as

(W, 
, �) = (W0, 
0, �0) + a2 (W1, 
1, �1) + · · · · .
(31)
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Substituting Eq. 31 into Eqs. 24–26 and also in the
boundary conditions, and collecting the terms of zero-
th order, we obtain

D4W0 = 0 (32a)

D2
0 = −W0 (32b)

D2�0 = −D
0 (32c)

with the boundary conditions

W0 = DW0 = 0 = D
0 = �0 at z = 0 (33a)

W0 = D2W0 = 0 = D
0 = D�0 at z = 1. (33b)

The solution to the zero-th order equations is found to
be

W0 = 0, 
0 = 1 and �0 = 0. (34)

The first order equations are then

D4W1 = Rt − Rm [Ns (1 − 2 z) − 1] (35a)

D2
1 = 1 + W1 [Ns (1 − 2 z) − 1] (35b)

D2�1 = D
1 (35c)

with the boundary conditions

W11 = DW1 = �1 = D
1 = 0 at z = 0 (36a)

W1 = D2W1 + Ma = D�1 = D
1 = 0 at z = 1.

(36b)

The general solution of Eq. 35a is given by

W1 = c1 z2 + c2 z3 + c3 z4 + c4 z5 (37)

where

c1 = Rt + Rm

16
− Rm Ns

240
+ Ma

4

c2 = −5 (Rt + Rm)

48
+ 7 Rm Ns

240
− Ma

4

c3 = Rt + Rm

24
− Rm Ns

24

c4 = Rm Ns

60
.

From Eq. 35b, after using the condition that D
1 = 0
at z = 0 and z = 1, it follows that

1 =
1∫

0

[1 − Ns (1 − 2 z)] W1 dz. (38)

Substituting for W1 from Eq. 37 into Eq. 38 and
carrying out the integration leads to an expression of
the form

Rtc+Rm

320
+ Mac

48
+ Rm Ns

2880
+ Ns

×
[

Rtc+Rm

2880
+ Mac

240
+ 11Rm Ns

100800

]
= 1. (39)

From Eq. 39 it is interesting to note that the parameter
M3 is not appearing in the expression and hence the
nonlinearity of magnetization has no effect on the onset
of Benard-Marangoni ferroconvection. Since at the on-
set of convection ac = 0 (very large wave length), one
would expect that M3 has no effect on the stability of
the system. Besides, it can be seen that the parameters
M1 and M3 have no influence on the onset of pure
Marangoni ferroconvection (Rt = 0) in the absence of
internal heat generation (Ns = 0). The numerical calcu-
lations carried out in the previous section also reflected
the same behavior.

It is interesting to check Eq. 39 under the limiting
conditions. When we set Rm = 0 and Ns = 0, Eq. 39
reduces to

Rtc

320
+ Mac

48
= 1 (40)

a known result for ordinary viscous fluid layer (Garcia-
Ybarra et al. 1987; Yang and Yang 1990).

When Mac = 0 and Ns = 0, Eq. 39 reduces to

Rtc = 320

(1 + M1)
(41)

and coincides with the result obtained by Nanjundappa
and Shivakumara (2008).

When we set Rtc = 0 and Rm = 0, Eq. 39 reduces to

Mac = 240

5 + Ns
(42)

which corresponds to the result obtained by Wilson
(1997).

When Ns = 0, Eq. 42 simply reduces to Mac = 48
and this is the known exact value for the clear viscous
fluid layer (Pearson 1958).
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Fig. 1 Critical Rayleigh
number Rtc versus internal
heat generation Ns for
different values of Rm
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Results and Discussion

The linear stability analysis is carried out to investigate
the effect of internal heat generation on the onset of
coupled Benard-Marangoni convection in a horizontal
ferrofluid layer in the presence of a uniform vertical
magnetic field. The boundaries are assumed to be per-
fectly insulated to temperature perturbations and the

critical eigenvalue (Mac or Rtc) and the corresponding
wave number (ac) are computed numerically by the
Galerkin technique as well as analytically by employing
a regular perturbation technique for different values
of Rm, M1 and Ns. The salient characteristics of these
parameters on the stability of the system are exhibited
graphically in Figs. 1, 2, 3 and 4. In these figures, the
results obtained from the above two techniques are

Fig. 2 Critical Marangoni
number Mac versus internal
heat generation Ns for
different values of Rm
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Fig. 3 Plot of locus of critical
Rayleigh number Rtc versus
critical Marangoni number
Mac for different values of
M1 for Ns = 5
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compared. In general, it is seen that the results obtained
by regular perturbation technique coincide exactly with
those obtained numerically and thus provides a jus-
tification for the use of regular perturbation technique
in solving the eigenvalue problem when the bound-
aries are insulating to temperature perturbations. In the
present context, we affirm that the analytical results
obtained for the present case are exact.

Figure 1 shows the variation of critical thermal
Rayleigh number Rtc as a function of dimensionless
internal heat source strength Ns for different values
of magnetic Rayleigh number Rm when Ma = 0. This
case corresponds to convective instability only due to
buoyancy forces. The figure clearly indicates that Rtc

decreases monotonically with Ns indicating the effect
of increasing internal heating is to destabilize the sys-

Fig. 4 Plot of locus of critical
Rayleigh number Rtc versus
critical Marangoni number
Mac for different values of Ns
for M1 = 2
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Fig. 5 Vertical velocity
eigenfunction for different
values of M1 for Ns = 5
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tem. This is because increasing Ns amounts to large
deviation in the basic temperature distribution of the
parabolic type which in turn enhances the thermal
disturbances in the fluid layer. It is more so with an
increase in the value of Rm and this is due to additive
reinforcement of destabilizing magnetic force. In the
case of increasing Rm, it is seen that Rtc decreases
quite rapidly first and then quite slowly. Thus the
combined effect of internal heating and magnetic force

is to reinforce together and to hasten the onset of
ferroconvection compared to their effect in isolation.
A similar situation prevails in the absence of thermal
buoyancy forces (i.e. Rt = 0) and this case corresponds
to Marangoni ferroconvection (see Fig. 2).

We look into the simultaneous presence of thermal
buoyancy and surface tension forces on the stability of
the system. A plot of critical Rayleigh number Rtc as
a function critical Marangoni number Mac is shown in

Fig. 6 Vertical velocity
eigenfunction for different
values of Ns for M1 = 2
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Fig. 3 for different values of M1 with Ns = 5 and in
Fig. 4 for different values of Ns with M1 = 2. From
the figures it is obvious that there is a strong coupling
between the critical Rayleigh and the Marangoni num-
bers. That is, when the buoyancy force is predominant
the surface tension force becomes negligible and vice-
versa. From Fig. 3 it is seen that an increase in the
value of M1 is to decrease the value of Rtc and thus
its effect is to hasten the onset of convection. This
is attributed to the increase in destabilizing magnetic
force. Nonetheless, the curves of different M1 converge
to the same value Mac = 24 when Rtc = 0 indicating
that it has no effect on Marangoni ferroconvection.
The analytically obtained results also corroborate this
behavior (see Eq. 4). Figure 4 shows that increase in
the value of Ns is to decrease both Mac and Rtc. Thus
the non-linear temperature distributions arising due to
volumetric distribution of heat sources is to advance the
onset of ferroconvection. It is further observed that the
critical Rayleigh/Marangoni numbers are independent
of the nonlinearity of fluid magnetization parameter
M3 and the analytically obtained results also confirm
this finding (see Eq. 39).

The perturbed vertical velocity eigenfunction W(z)

is presented in Figs. 5 and 6 for different values of
M1 and Ns, respectively. As can be seen, increase in
the value of M1 (see Fig. 5) and Ns (see Fig. 6) is to
drive the flow with more vigor and thus their effect is to
hasten the onset of ferroconvection.

Conclusions

The effect of internal heat generation on the onset of
coupled Benard-Marangoni ferroconvection is studied
theoretically for perfectly insulated boundaries. From
the foregoing study, the following conclusions can be
drawn:

1. The effect of increase in the value of magnetic
Rayleigh number Rm and dimensionless internal
heat source strength Ns is to reinforce together and
to hasten the onset of coupled Benard-Marangoni
ferroconvection.

2. The nonlinearity of fluid magnetization parameter
M3 has no effect on the onset of ferroconvection.

3. The buoyancy and surface tension forces comple-
ment with each other and it is always found that
Mac < Rtc; a result in accordance with ordinary
viscous fluids.

4. The magnetic number M1 has no effect on the onset
of pure Marangoni ferroconvection in the absence

of internal heat generation but otherwise its effect
is to advance the onset of convection.

5. The critical eigenvalues obtained by a regular
perturbation technique and numerically by the
Galerkin technique complement with each other
indicating the analytical solutions obtained are
exact
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