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a b s t r a c t

The effect of magnetic field dependent viscosity on the onset of Bénard–Marangoni ferroconvection in a

horizontal layer of ferrofluid is investigated theoretically. The lower boundary is taken to be rigid with

fixed temperature, while the upper free boundary at which temperature-dependent surface tension

effect is considered is non-deformable and subject to a general thermal condition. The Rayleigh–Ritz

method with Chebyshev polynomials of the second kind as trial functions is employed to extract the

critical stability parameters numerically. The results show that the onset of ferroconvection is delayed

with an increase in the magnetic field dependent viscosity parameter (L) and Biot number (Bi) but

opposite is the case with an increase in the value of magnetic Rayleigh number (Rm) and nonlinearity of

magnetization (M3). Further, increase in Rm, M3, and decrease in L and Bi is to decrease the size of the

convection cells.

& 2010 Published by Elsevier B.V.
1. Introduction

A typical ferromagnetic fluid contains single domain nanoparticles
of magnetic material (iron, cobalt or magnetite) stably suspended in a
liquid carrier with low electrical conductivity. Each particle is
encapsulated by a monolayer of surfactant in order to prevent
particle coalescence due to magnetic attraction. The average size
of magnetic nanoparticles is about 10 nm. Magnetic colloids
have magnetic susceptibility which is thousands times larger than
that of natural materials. Such fluids became the subject of a special
branch of magnetohydrodynamics termed as ferrohydrodynamics
(Rosensweig [1]) and found applications in various areas of science,
technology and nanotechnology (Bashtovoy et al. [2], [3]).

The magnetization of ferromagnetic fluids depends on the
magnetic field, the temperature and the density of the fluid. Any
variation of these quantities can induce a change in body force
distribution in the fluid. This leads to convection in ferrofluids in
the presence of magnetic field gradient, known as ferroconvec-
tion, which is similar to buoyancy driven convection. Buoyancy
driven convection in a layer of ferrofluid heated uniformly from
below in the presence of a uniform magnetic field has been
studied extensively over the years. In the first theoretical study
(Finlayson [4]), which dealt with convection in a horizontal layer
Elsevier B.V.
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of magnetic fluid subject to a vertical temperature gradient and
placed in a transverse uniform magnetic field, the concentration
of magnetic particles was assumed to be constant. Therefore only
thermo-gravitational and thermomagnetic mechanisms of con-
vection were considered. The discussed theory predicted a
destabilizing influence of the magnetic field and extensively
continued over the years (Lalas and Carmi [5]; Shliomis [6]; Gotoh
and Yamada [7]; Stiles and Kagan [8]; Kaloni and Lou [9]). The
non-linear stability analysis for a magnetized ferrofluid layer
heated from below for stress-free boundaries has been performed
by Sunil and Mahjan [10]. A variety of velocity and temperature
boundary conditions on the onset of ferroconvection in an initially
quiescent ferrofluid layer has been considered by Nanjundappa
and Shivakumara [11]. Recently, thermal convection of ferrofluids
in the presence of a uniform vertical magnetic field with the
boundary temperatures modulated sinusoidally about some
reference values has been discussed by Singh and Bajaj [12],
while Belyaev and Smorodin [13] have studied the effect of an
alternating uniform magnetic field on the onset of convection in a
horizontal layer of a ferrofluid within the framework of a quasi-
stationary approach.

It is a well established fact that convection can also be induced
by surface-tension forces provided it is a function of temperature.
In view of the fact that heat transfer is greatly enhanced due to
convection, the magnetic convection problems offer new
possibilities for new applications in cooling with motors, loud
speakers, transmission lines, and other equipment where
magnetic field is already present. If the ferrofluid layer has an
upper surface open to atmosphere then the instability is due to
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the combined effects of the buoyancy as well as temperature-
dependent surface tension forces, known as Bénard–Marangoni
ferroconvection. A limited number of studies have addressed the
effect of surface tension forces on ferroconvection in a horizontal
ferrofluid layer. Linear and non-linear stability of combined
buoyancy-surface tension effects in a ferrofluid layer heated from
below is considered by Qin and Kaloni [14]. The coupling between
Marangoni and Rosensweig instabilities by considering two semi-
infinite incompressible and immiscible viscous fluids of infinite
lateral extent in which one of them is ferromagnetic and the other
is a usual Newtonian liquid is studied by Weilepp and Brand [15].
Shivakumara et al. [16] have investigated the effect of different
forms of basic temperature gradients on the onset of ferroconvec-
tion driven by combined surface tension and buoyancy forces
with an idea of understanding control of ferroconvection. The
Rayleigh–Bénard–Marangoni instability in a ferrofluid layer in the
presence of weak vertical magnetic field normal to the boundaries
has been discussed by Hennenberg et al. [17]. The onset of
Marangoni ferroconvection with different initial temperature
gradients is analyzed by Shivakumara and Nanjundappa [18].

Thermal convection in ferromagnetic fluids is gaining much
importance due to its astounding physical properties. One such
property is viscosity of the ferromagnetic fluid. The viscosity of
the ferrofluid is predicted by dimensional analysis to be a function
of the ratio of hydrodynamic stress to magnetic stress (Rosenswieg
et al. [19]). The effect of a homogeneous magnetic field on the
viscosity of a fluid with solid particles possessing intrinsic
magnetic moments has been investigated by Shliomis [20]. The
effect of magnetic field dependent (MFD) viscosity on the onset of
ferroconvection in a rotating ferrofluid layer is discussed by
Vaidyanathan et al. [21], with or without dust particles by Sunil
et al. [22] and the non-linear stability analysis has also been
performed by Sunil et al. [23]. Recently, Nanjundappa et al. [24]
have investigated the effect of MFD viscosity on the onset of
convection in a ferromagnetic fluid layer in the presence of a
vertical magnetic field by considering the bounding surfaces are
either rigid-ferromagnetic or stress- free with constant heat flux
conditions.

The intent of the present paper is to study coupled Bénard–
Marangoni ferroconvection in a ferrofluid layer in the presence of
a uniform vertical magnetic field with magnetic field dependent
viscosity. The lower boundary is rigid with fixed temperature,
while the upper non-deformable free boundary is subjected to
temperature dependent surface tension forces and a general
thermal boundary condition on the perturbation temperature is
imposed. The study helps in understanding control of ferrocon-
vection by magnetic field dependent viscosity, which is useful in
many heat transfer related problems particularly in materials
science processing. The resulting eigenvalue problem is solved
numerically by employing the Rayleigh–Ritz method with Cheby-
shev polynomials of the second kind as trial functions.

The paper is organized as under. Section 2 is devoted to the
formulation of the problem. The method of solution is discussed
in Section 3. In Section 4, the numerical results are discussed and
some important conclusions follow in Section 5.
2. Mathematical formulation

We consider a Boussinesq ferrofluid layer of thickness d with
no lateral boundaries and a uniform magnetic field H0 acting
normal to the boundaries. The lower and the upper boundaries
are maintained at constant but different temperatures T0 and
T1(oT0), respectively. A Cartesian co-ordinate system (x, y, z) is
used with the origin at the lower boundary and the z-axis
vertically upward. Gravity acts in the negative z-direction,
g
!
¼�gk̂, where k̂ is the unit vector in the z-direction. The layer

is bounded below by a rigid surface while the free surface which is
subjected to temperature dependent surface tension forces is
assumed to be flat and non-deformable. The surface tension s is
assumed to vary linearly with temperature in the form

s¼ s0�sT ðT�T0Þ ð1Þ

where s0 is the unperturbed value and �sT is the rate of change
of surface tension with temperature. The fluid density r is
assumed to vary linearly with temperature in the form

r¼ r0 1�atðT�T0Þ½ � ð2Þ

where at is the thermal expansion coefficient and r0 is the density
at T=T0.

In the study of ferroconvection, we have to solve the Maxwell
equations simultaneously with the balance of mass, linear
momentum and energy. Since the fluid is assumed to be
electrically not conducting, the Maxwell equations reduce to

rU B
!
¼ 0 ð3Þ

r � H
!
¼ 0 ð4Þ

where B
!

is the magnetic induction and H
!

the intensity of
magnetic field. In view of Eq. (4), we can express the magnetic
field by a scalar potential

H
!
¼rj ð5Þ

Further B
!
; M
!

and H
!

are related by

B
!
¼ m0ðM

!
þ H
!
Þ ð6Þ

where M
!

is the magnetization and m0 the magnetic permeability
of vacuum.

Following Finlayson [4], we assume that the magnetization is
aligned with the magnetic field, but allow dependence on the
magnitude of magnetic field as well as on the temperature in the
form,

M
!
¼ ½M0þwðH�H0Þ�KðT�T0Þ�ðH

!
=HÞ

ð7Þ

where M0 ¼MðH0; T0Þ; H¼ H
!��� ���; M¼ M

!��� ���; w¼ ð@M=@HÞH0 ;T0
is the

magnetic susceptibility and K ¼�ð@M=@TÞH0
;T0

is the pyromag-
netic coefficient.

The momentum equation is

r0

@ q
!

@t
þð q
!

UrÞ q
!

" #
¼�rpþr g

!
þm0ðM

!
UrÞH
!
þ2rU ZD

~

� �
ð8Þ

where q
!
¼ ðu; v;wÞ is the velocity, p the pressure, t the time and

D
~
¼ ½r q
!
þðr q
!
Þ
T
�=2 the rate of strain tensor. The fluid is assumed

to be incompressible having variable viscosity. Experimentally, it
has been demonstrated that the magnetic viscosity has got
exponential variation, with respect to magnetic field (Rosenwieg
et al. [19]). As a first approximation, for small field variation,
linear variation of magnetic viscosity has been used in the form

Z¼ Z0ð1þ d
!

U B
!
Þ, where d

!
is the variation coefficient of magnetic

field dependent viscosity and is considered to be isotropic
(Vaidyanathan et al. [21]), Z0 is taken as viscosity of the fluid
when the applied magnetic field is absent.

Neglecting viscous dissipation, the energy equation is [4]

r0CV ;H�m0 H
!

U
@M
!

@T

 !
V ;H

2
4

3
5DT

Dt
þm0T

@M
!

@T

 !
V ;H

U
D H
!

Dt
¼ ktr

2T ð9Þ

where, CV,H is the specific heat capacity at constant volume and
magnetic field per unit mass, and kt the thermal conductivity.
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The continuity equation is

rU q
!
¼ 0 ð10Þ

We follow the stability analysis as outlined in the work of
Finlayson [4]. The basic state is quiescent and is given by

q
!
¼ 0; p¼ pbðzÞ; Tb ¼ T0�bz b¼

DT

d

� �

H
!

b ¼ H0�
Kbz

1þw

� �
k̂; M
!

b ¼ M0þ
Kbz

1þw

� �
k̂ ð11Þ

To study the stability of the system, we perturb all the
variables in the form

q
!
¼ q
!0
; p¼ pbðzÞþp0; Z¼ ZbðzÞþZ0; T ¼ TbðzÞþT 0

H
!
¼ H
!

bðzÞþ H
!0
; M
!
¼M
!

bðzÞþM
!0

ð12Þ

where, q
!0;p0;Z0; T 0; H

!
0 and M

!
0 are perturbed variables and are

assumed to be small.
Substituting Eq. (12) into Eq. (3), using Eqs.(6) and (7), and

assuming that Kbd{(1+w)H0 as propounded by Finlayson [4], we
obtain (after dropping the primes)

HxþMx ¼ ð1þM0=H0ÞHx;

HyþMy ¼ ð1þM0=H0ÞHy;

HzþMz ¼ ð1þwÞHz�K T ð13Þ

where (Hx, Hy, Hz) and (Mx, My, Mz) are (x, y, z) components of
perturbed magnetic field and magnetization, respectively.

Substituting Eq.(12) into Eq. (8) and linearizing, we obtain in
components (after neglecting the primes)

r0

@u

@t
¼�

@p

@x
þZ0 1þm0dðM0þH0Þ

� �
r2uþm0ðM0þH0Þ

@Hx

@z
ð14Þ

r0

@v

@t
¼�

@p

@y
þZ0 1þm0dðM0þH0Þ

� �
r

2vþm0ðM0þH0Þ
@Hy

@z
ð15Þ

r0

@w

@t
¼�

@p

@z
þr0atgTþZ0 1þm0dðM0þH0Þ

� �
r

2w

þm0ðM0þH0Þ
@Hz

@z
�m0KbHzþ

m0K2bT

1þw
ð16Þ

Differentiating Eqs. (14) and (15) partially with respect to x

and y, respectively, and adding, we obtain

r
2
1p¼�r0atg

@T

@z
þm0ðM0þH0Þ

@

@z
ðrUH
!
Þ�m0Kb

@Hz

@z
þ
m0K2b
1þw

@T

@z

ð17Þ

where r2
1 ¼ @

2=@x2þ@2=@y2 is the horizontal Laplacian operator.
Eliminating the pressure term from Eq. (16), using Eq. (17), we
obtain

r0

@

@t
�Z0 1þdm0ðM0þH0Þ

	 

r2

� �
r2w¼�r0atgr

2
1Tþm0Kb

@

@z
ðr2

1fÞ

þ
m0K2b
1þw ðr

2
1TÞ ð18Þ

where r2
¼r

2
1þ@

2=@z2 is the Laplacian operator.
As before, substituting Eq. (12) into Eq. (9) and linearizing, we

obtain (after neglecting primes)

r0C0
@T

@t
�m0KT0

@

@t

@j
@z

� �
¼ r0C0�

m0K2T0

1þw

� �
wbþktr

2T ð19Þ

where r0C0=r0CV,H+m0KH0.
Finally, Eqs. (3) and (4), after using Eqs. (12) and (13), yield
(after neglecting primes)

1þ
M0

H0

� �
r

2
1jþð1þwÞ

@2j
@z2
�K

@T

@z
¼ 0: ð20Þ

Since the principle of exchange of stability is valid, we assume
the normal mode solution in the form

fw; T;jg ¼ fW ;Y;FgðzÞeiðl xþm yÞ ð21Þ

where l and m are wave numbers in the x and y directions
respectively. Substituting Eq. (21) in Eqs. (18)–(20) and non-
dimensionalizing the quantities in the form

ðx�; y�; z�Þ ¼
x

d
;
y

d
;
z

d

� �
; W� ¼

d

n
W ; t� ¼

n
d2

t;

Y� ¼
k
bnd

Y; F� ¼
ð1þwÞk
Kbnd2

F ð22Þ

we get

ð1þLÞðD2�a2Þ
2W ¼ ðRaþRmÞa

2Y�a2RmDF ð23Þ

ðD2
�a2ÞY¼�W ð24Þ

ðD2
�a2M3ÞF�DY¼ 0 ð25Þ

where D=d/dz is the differential operator, a¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2þm2
p

is the
overall horizontal wave number, Ra=at gbd4/kv the thermal
Rayleigh number, Rm=RaM1=m0K2b2d4/(1+w)km the magnetic
Rayleigh number, L=dm0(M0+H0) the non-dimensional magnetic
field dependent viscosity parameter, M1=m0K2b/(1+w)atr0 g the
magnetic number, M3=(1+M0/H0)/(1+w) the measure of non-
linearity of magnetization parameter, M2=m0T0K2/r0C0(1+w) the
non-dimensional parameter and its value for different carrier
liquids turns out to be of the order of 10�6and hence its effect is
neglected as compared to unity.

The above equations are to be solved subject to appropriate
boundary conditions. The boundary conditions considered are

W ¼DW ¼Y¼F¼ 0 at z¼ 0 ð26Þ

W ¼ ð1þLÞD2WþMa a2Y¼DYþBiY¼DF¼ 0 at z¼ 1 ð27Þ

where Ma=sT DT d/mk the Marangoni number and Bi=hd/kt is the
Biot number. The case Bi=0 and Bi-N ,respectively, correspond
to constant heat flux and isothermal conditions at the upper
boundary.
3. Method of solution

Eqs. (23)–(25) together with the boundary conditions (26) and
(27) constitute a Sturm–Liouville problem with the Marangoni
number Ma or the Rayleigh number Ra, as an eigenvalue while
keeping other physical parameters fixed. To solve the resulting
eigenvalue problem, Rayleigh–Ritz’s method is used. Accordingly,
the variables are written in a series of basis functions as

W ¼
Xn

i ¼ 1

AiWiðzÞ; YðzÞ ¼
Xn

i ¼ 1

CiYiðzÞ and FðzÞ ¼
Xn

i ¼ 1

DiFiðzÞ ð28Þ

where the trial functions Wi(z), Yi(z) and Fi(z) will be generally
chosen in such a way that they satisfy the respective boundary
conditions, and Ai, Ci and Di are constants. Substituting Eq.(28)
into Eqs.(23)–(25), multiplying the resulting momentum Eq. (18)
by Wj(z), energy Eq. (19) by Yj(z) and magnetic potential Eq. (20)
by Fj(z); performing the integration by parts with respect to z

between z=0 and 1 and using the boundary conditions (26) and
(27), we obtain the following system of linear homogeneous
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algebraic equations:

CjiAiþDjiCiþEjiDi ¼ 0 ð29Þ

FjiAiþGjiCi ¼ 0 ð30Þ

HjiCiþ IjiDi ¼ 0 ð31Þ

The coefficients Cji� Iji involve the inner products of the basis
functions and are given by

Cji ¼ ð1þLÞ D2WjD
2Wi

� �
þ2a2 DWjDWi

� �
þa4 WjWi

� �� �
Dji ¼�a2ðRaþRmÞ YjWi

� �
þa2MaDWjð1ÞYið1Þ

Eji ¼ a2Rm WjDFi

� �
Fji ¼� YjWi

� �
Gji ¼ DYjDYi

� �
þa2oYjYi4þBiYjð1ÞYið1Þ

Hji ¼ FjDYi

� �
Iji ¼ DFjDFi

� �
þa2M3 FjFi

� �
where the inner product is defined as � � �h i ¼

R 1
0 ð� � �Þ dz: The above

set of homogeneous algebraic equations can have a non-trivial
solution if and only if

Cji Dji Eji

Fji Gji 0

0 Hji Iji

�������
�������¼ 0 ð32Þ

The eigenvalue has to be extracted from the characteristic
Eq.(32). We select the trial functions as

Wi ¼ z2ð1�zÞT�i�1; Yi ¼ zð1�z=2ÞT�i�1 and Fi ¼ z2ð1�2z=3ÞT�i�1

ð33Þ

where T�i s are the Chebyshev polynomials of the second kind,
such that Wi, Yi and Fi satisfy the corresponding boundary
conditions except, (1+L)D2W+Ma a2Y=0=DY+BiY at z=1 but
the residuals from the equations are included as residuals from
the differential equations.
0

2.44

2.46

Rac

116 232 348 464 580
4. Numerical results and discussion

It may be noted that Eq.(32) leads to the characteristic
equation giving the Marangoni number Ma or the Rayleigh
number Ra as a function of the wavenumber a, the parameters
Table 1
Comparison of Mac for different values of Ra and Bi with Rm=0 and L=0.

Bi Ra Davis [25] Present study
Mac Mac

0 0 79.61 79.608

100 68.43 68.484

200 57.12 57.116

300 45.49 45.491

400 33.59 33.589

500 21.39 21.387

600 8.857 8.857

669 0.000 0.000

10 0 413.4 413.444

100 378.7 378.741

300 305.0 304.980

500 225.1 225.116

700 138.6 138.634

900 44.73 44.730

989.49 0.000 0.000
Rm, Bi, M3 and L. The inner products involved in the equation are
evaluated analytically in order to avoid errors in the numerical
integration. Computations reveal that the convergence in finding
Mac or Rac crucially depends on the value of MFD viscosity
parameter L. The results presented here are for i= j=6 the order at
which the convergence is achieved, in general. In order to validate
the numerical solution procedure used, first the critical values
(Rac, Mac, ac) obtained from the present study under the limiting
conditions are compared with the previously published results of
Davis [25] in Table 1. The results tabulated in Table 1 for different
values of heat transfer coefficient Bi (i.e. Biot number) are for L=0
and Rm=0 (i.e., classical Bénard–Marangoni convection for
ordinary viscous fluid). From the table it is evident that there is
an excellent agreement between the results of the present
study and the previously published ones. This verifies the
applicability and accuracy of the method used in solving the
problem.
0

2.36

2.38

2.40

2.42

0.8

0.6

0.4

0.2

Ra

2.35

a c

80 160 240 320 400

� = 0

Fig. 1. (a) Locus of critical Marangoni number Mac and Rayleigh number Rac for

different values of L for Bi=2, M1=2 and M3=1. (b) Critical wave number ac as a

function of Ra for different values of L for Bi=2, M1=2 and M3=1.
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a c

80 160 240 320 400

Fig. 2. (a) Locus of critical Marangoni number Mac and Rayleigh number Rac for

different values of Bi for L=0.2, M1=2 and M3=1. (b) Critical wave number ac as a

function of Ra for different values of Bi for L=0.2, M1=2 and M3=1.

0
0

36

72

108

144

180

5

3

2

1

0
2.34
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2.64

Ra

0

1

2

3

M1 = 5

M
a c

Rac

M1 = 0

200 400 600 800 1000

a c

60 120 180 240 300

Fig. 3. (a) Locus of critical Marangoni number Mac and Rayleigh number Rac for

different values of M1 for L=0.2, Bi=2 and M3=1. (b) Critical wave number ac as a

function of Ra for different values of M1 for L=0.2, Bi=2 and M3=1.
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We now look into the solution of the complete problem,
which involves the effect of all the parameters Ra, Rm, Bi, L, M1

and M3 on the criterion for the onset of convection. The salient
characteristics of these parameters are exhibited graphically in
Figs. 1–7 and also in Table 2. These figures exhibit a tight coupling
between the buoyancy, magnetization and surface tension forces.
Fig. 1(a) shows the locus of the critical Marangoni number Mac

and the Rayleigh number Rac for different values of MFD viscosity
parameter L for Bi=2, M1=2 and M3=1. From the figure, it is
obvious that there is a strong coupling between the critical
Rayleigh and the Marangoni numbers, and an increase in the
Rayleigh number has a destabilizing effect on the system. Thus,
when the buoyancy force is predominant, the surface tension
force becomes negligible and vice-versa. From Fig. 1(a), it is seen
that the critical Rayleigh and Marangoni numbers increase with
an increase in the MFD viscosity parameter and thus it has a
stabilizing effect on the system. That is, the effect of increasing L
is to delay the onset of Bénard–Marangoni ferroconvection. The
variation in ac as a function of Ra is elucidated in Fig. 1(b) for
different values of L with Bi=2, M1=2 and M3=1. It may be noted
that the curves of different L cross over each other with an
increase in the value of Ra. That is, an increase in the value of L
increases marginally the critical wave number ac up to some value
of Ra, depending on the value of L, and an opposite trend prevails
with further increase in the value of Ra.

The plots in Fig. 2(a) represents the locus of critical Marangoni
number Mac and Rayleigh number Rac for different values of the
heat transfer coefficient Bi for L=0.2, M3=1 and M1=2. The critical
Rayleigh and Marangoni numbers increase with an increase in Bi

and thus its effect is to delay the onset of Bénard–Marangoni
ferroconvection. This may be attributed to the fact that with
increasing Bi, the thermal disturbances can easily dissipate into
the ambient surrounding due to a better convective heat transfer
coefficient at the top free surface and hence makes the system
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more stable. Fig. 2(b) represents the corresponding critical wave
number and it indicates that increase in the value of Bi is to
increase ac and thus its effect is to reduce the size of convection
cells. It is also seen that the critical wave number passes through a
minimum with increasing Ra.

Fig. 3(a) presents the locus of the critical values of Rac and Mac

for various values of magnetic number M1 for L=0.02, M3=1 and
Bi=2. The curve of M1=0 corresponds to the case when only the
buoyancy force is in effect and it lies above all other curves of
different M1(a0). This indicates that increasing M1 is to make the
system more unstable due to increase in the destabilizing
magnetic force. Besides, the curves of different M1 become closer
as the value of M1 increases. Although the critical wave number ac

remains invariant for different values of M1 at lower values of
Ra it increases with further increase in the value of Ra (see
Fig. 3(b)). Further, the deviation in the critical wave number
amongst different values of M1 increases with increasing M1 as
well as Ra.
Fig. 4(a) presents the critical Marangoni number Mac as a
function of critical Rayleigh number Rac for several values of
nonlinearity of magnetization parameter M3 for L=0.2, Bi=2 and
M1=2. It can be seen that an increase in M3 is to decrease Rac and
Mac but only marginally and thus it has a destabilizing effect on
the stability of the system. This may be due to the fact that the
application of magnetic field makes the ferrofluid to acquire
larger magnetization which in turn interacts with the imposed
magnetic field and releases more energy to drive the flow faster.
Hence, the system becomes unstable with a smaller temperature
gradient as the value of M3 increases. Alternatively, a higher value
of M3 would arise either due to a larger pyromagnetic coefficient
or larger temperature gradient. Both these factors are conducive
for generating a larger gradient in the Kelvin body force field,
possibly promoting the instability.

The variation of critical wave number ac as a function of
Rayleigh number Ra is shown in Fig. 4(b) for different values of
M3. From the figure, we note that an increase in M3 is to increase
ac and hence its effect is to decrease the dimension of convection
cells. From the figure it is also seen that the critical wave number
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decreases initially with increasing Ra but eventually increases
with further increase in the value of Ra.

Figs. 5–7 show the critical values of Mac (pure Marangoni
ferroconvection) and Rac (pure Bénard ferroconvection) as well as
corresponding ac for different values of Bi, Rm and M3, respec-
tively, as a function of MFD viscosity parameter L. From the
figures, it is seen that MacoRac and the effect of increasing L is to
delay the onset of Bénard/Marangoni ferroconvection. Further,
increase in Bi (Fig. 5(a)) and decrease in Rm (Fig. 6(a)) and M3

(Fig. 7(a)) is to increase the critical Rayleigh/Marangoni number
and hence has a stabilizing effect on the system. Moreover,
increase in Bi (Fig. 5(b)), Rm (Fig. 6) band M3(Fig. 7(b)) is to
decrease the width of convection cells. The critical wave numbers
ac for Bénard ferroconvection are always found to be higher than
those of pure Marangoni ferroconvection (see Figs. 5–7(b)).
Further inspection of these figures reveals that the variation in
ac with L is insignificant but for different values of M3 it decreases
monotonically with L.

The tight coupling between buoyancy, surface tension and
magnetic forces is exhibited quantitatively by tabulating
the values of triplets (Rac, Mac, Rmc) for different values of L and
M3 with Bi=2 in Table 2. It is observed that increase in one of
these decreases the other and vice-versa. As M3 increases, Rmc

decreases and the results reduce to that of classical Bénard–
Marangoni problem for ordinary viscous fluids as M3-N. That is,
Rmc=Rac as M3-N.
5. Conclusions

The effect of MFD viscosity on the criterion for the onset of
coupled Bénard–Marangoni convection in a ferrofluid layer is
investigated since the viscosity of the magnetic fluid varies with
an applied magnetic field. The lower rigid surface of the ferrofluid
layer is heated from below, while a general thermal condition is
used at the upper free surface subjected to a surface tension
decreasing with temperature. The resulting eigenvalue problem is
solved numerically by employing the Rayleigh–Ritz technique
with either Rayleigh number (Ra) or Marangoni number (Ma) as
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Table 2
The critical instability parameters Rac and Rmc for different values of L and Ma when Bi=2.

L Mac Rac (Rm=0) Rmc M3=1 (Ra=0) Rmc M3=10 (Ra=0) Rmc M3=25 (Ra=0) Rmc M-N (Ra=0)

0 0 831.27 1046.7 894.635 861.211 831.27

50 579.525 722.888 624.305 600.728 579.525

100 304.572 375.905 328.012 315.659 304.572

150 4.27148 5.211 4.59223 4.42246 4.27148

150.679 0.0 0.0 0.0 0.0 0.0

0.2 0 997.524 1256.036 1073.562 1033.453 997.524

50 747.670 934.177 805.379 774.991 747.670

100 478.679 592.955 515.647 496.178 478.679

150 189.353 232.373 203.788 196.168 189.353

180.815 0.0 0.0 0.0 0.0 0.0

0.5 0 1246.91 1570.05 1341.95 1291.82 1246.91

50 998.934 1250.15 1075.91 1035.37 998.934

100 735.787 914.677 792.686 762.729 735.787

150 456.859 563.857 492.019 473.489 456.859

200 161.094 197.308 173.321 166.861 161.094

226.019 0.0 0.0 0.0 0.0 0.0
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the eigenvalue. The effect of magnetic field dependent viscosity
measured through the parameter L on the physical parameters of
importance Ra as well as Ma is analyzed in detail.

The following conclusions can be drawn from the present
study
(i)
 The effect of increase in the value of magnetic field
dependent viscosity parameter L is to increase the value of
critical stability parameters Rac or Mac and hence its effect is
to delay the onset of Bénard–Marangoni ferroconvection.
(ii)
 Increase in the value of Biot number Bi is to delay the onset of
Bénard–Marangoni ferroconvection, while increase in the
value of magnetic Rayleigh number Rm and nonlinearity of
fluid magnetization parameter M3 is to advance the onset of
Bénard–Marangoni ferroconvection.
(iii)
 The buoyancy and surface tension forces complement with
each other and it is always found that MacoRac; a result in
accordance with ordinary viscous fluids.
(iv)
 The effect of increase in Bi and L as well as decrease in
M1 and M3 values is to decrease the dimension of the
convection cells.
(v)
 As M3-N, the results reduce to that of the Bénard–
Marangoni problem for ordinary viscous fluids.
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