191 research outputs found

    Location, Location, Location: Alterations in the Functional Topography of Face- but not Object- or Place-Related Cortex in Adolescents with Autism

    Get PDF
    In autism, impairments in face processing are a relatively recent discovery, but have quickly become a widely accepted aspect of the behavioral profile. Only a handful of studies have investigated potential atypicalities in autism in the development of the neural substrates mediating face processing. High-functioning individuals with autism (HFA) and matched typically developing (TD) controls watched dynamic movie vignettes of faces, common objects, buildings, and scenes of navigation while undergoing an fMRI scan. With these data, we mapped the functional topography of category-selective activation for faces bilaterally in the fusiform gyrus, occipital face area, and posterior superior temporal sulcus. Additionally, we mapped category-selective activation for objects in the lateral occipital area and for places in the parahippocampal place area in the two groups. Our findings do not indicate a generalized disruption in the development of the entire ventral visual pathway in autism. Instead, our results suggest that the functional topography of face-related cortex is selectively disrupted in autism and that this alteration is present in early adolescence. Furthermore, for those HFA adolescents who do exhibit face-selective activation, this activation tends to be located in traditionally object-related regions, which supports the hypothesis that perceptual processing of faces in autism may be more akin to the perceptual processing of common objects in TD individuals

    Deficits in Adults with Autism Spectrum Disorders When Processing Multiple Objects in Dynamic Scenes

    Get PDF
    People with autism spectrum disorders (ASD) process visual information in a manner that is distinct from typically developing individuals. They may be less sensitive to people\u27s goals and, more generally, focus on visual details instead of the entire scene. To examine these differences, people with and without ASD were asked to detect changes in dynamic scenes with multiple elements. Participants viewed a brief video of a person or an inanimate object (the figure ) moving from one object to another; after a delay, they reported whether a second video was the same or different. Possible changes included the figure, the object the figure was moving from, or the object the figure was moving toward (the goal ). We hypothesized that individuals with ASD would be less sensitive to changes in scenes with people, particularly elements that might be the person\u27s goal. Alternately, people with ASD might attend to fewer elements regardless of whether the scene included a person. Our results indicate that, like controls, people with ASD noticed a change in the goal object at the end of a person\u27s movement more often than the object at the start. However, the group with ASD did not undergo the developmental improvement that was evident typically when detecting changes in both the start and end objects. This atypical development led to deficits in adults with ASD that were not specific to scenes with people or to goals. Improvements in visual processing that underlie mature representation of scenes may not occur in ASD, suggesting that late developing brain processes are affected

    Is He Being Bad? Social and Language Brain Networks during Social Judgment in Children with Autism

    Get PDF
    Individuals with autism often violate social rules and have lower accuracy in identifying and explaining inappropriate social behavior. Twelve children with autism (AD) and thirteen children with typical development (TD) participated in this fMRI study of the neurofunctional basis of social judgment. Participants indicated in which of two pictures a boy was being bad (Social condition) or which of two pictures was outdoors (Physical condition). In the within-group Social-Physical comparison, TD children used components of mentalizing and language networks [bilateral inferior frontal gyrus (IFG), bilateral medial prefrontal cortex (mPFC), and bilateral posterior superior temporal sulcus (pSTS)], whereas AD children used a network that was primarily right IFG and bilateral pSTS, suggesting reduced use of social and language networks during this social judgment task. A direct group comparison on the Social-Physical contrast showed that the TD group had greater mPFC, bilateral IFG, and left superior temporal pole activity than the AD group. No regions were more active in the AD group than in the group with TD in this comparison. Both groups successfully performed the task, which required minimal language. The groups also performed similarly on eyetracking measures, indicating that the activation results probably reflect the use of a more basic strategy by the autism group rather than performance disparities. Even though language was unnecessary, the children with TD recruited language areas during the social task, suggesting automatic encoding of their knowledge into language; however, this was not the case for the children with autism. These findings support behavioral research indicating that, whereas children with autism may recognize socially inappropriate behavior, they have difficulty using spoken language to explain why it is inappropriate. The fMRI results indicate that AD children may not automatically use language to encode their social understanding, making expression and generalization of this knowledge more difficult. © 2012 Carter et al

    Unreliable Evoked Responses in Autism

    Get PDF
    SummaryAutism has been described as a disorder of general neural processing, but the particular processing characteristics that might be abnormal in autism have mostly remained obscure. Here, we present evidence of one such characteristic: poor evoked response reliability. We compared cortical response amplitude and reliability (consistency across trials) in visual, auditory, and somatosensory cortices of high-functioning individuals with autism and controls. Mean response amplitudes were statistically indistinguishable across groups, yet trial-by-trial response reliability was significantly weaker in autism, yielding smaller signal-to-noise ratios in all sensory systems. Response reliability differences were evident only in evoked cortical responses and not in ongoing resting-state activity. These findings reveal that abnormally unreliable cortical responses, even to elementary nonsocial sensory stimuli, may represent a fundamental physiological alteration of neural processing in autism. The results motivate a critical expansion of autism research to determine whether (and how) basic neural processing properties such as reliability, plasticity, and adaptation/habituation are altered in autism

    Increased frontal cortical folding in autism: A preliminary MRI study

    Get PDF
    Abstract The gyrification index (GI), the ratio of total to outer cortical contour, was applied to measure the cerebral folding patterns in autism. GI was examined on a frontal coronal slice obtained from MRI scans of 30 nonmentally retarded individuals with autism and 32 matched healthy controls. In the autistic group, left frontal GI was higher in children and adolescents but not in adults. Cortical folding was decreased bilaterally with age in the total autistic sample but not in controls. These preliminary findings suggest that the gyrification patterns in autism may be abnormal, which could be related to the various cortical anomalies observed in this disorder

    Genome-scan for IQ discrepancy in autism: evidence for loci on chromosomes 10 and 16

    Get PDF
    Performance IQ (PIQ) greater than verbal IQ (VIQ) is often observed in studies of the cognitive abilities of autistic individuals. This characteristic is correlated with social and communication impairments, key parts of the autism diagnosis. We present the first genetic analyses of IQ discrepancy (PIQ–VIQ) as an autism-related phenotype. We performed genome-wide joint linkage and segregation analyses on 287 multiplex families, using a Markov chain Monte Carlo approach. Genetic data included a genome-scan of 387 micro-satellite markers in 210 families augmented with additional markers added in a subset of families. Empirical P values were calculated for five interesting regions. Linkage analysis identified five chromosomal regions with substantial regional evidence of linkage; 10p12 [P = 0.001; genome-wide (gw) P = 0.05], 16q23 (P = 0.015; gw P = 0.53), 2p21 (P = 0.03, gw P = 0.78), 6q25 (P = 0.047, gw P = 0.91) and 15q23–25 (P = 0.053, gw P = 0.93). The location of the chromosome 10 linkage signal coincides with a region noted in a much earlier genome-scan for autism, and the chromosome 16 signal coincides exactly with a linkage signal for non-word repetition in specific language impairment. This study provides strong evidence for a QTL influencing IQ discrepancy in families with autistic individuals on chromosome 10, and suggestive evidence for a QTL on chromosome 16. The location of the chromosome 16 signal suggests a candidate gene, CDH13, a T-cadherin expressed in the brain, which has been implicated in previous SNP studies of autism and ADHD

    Evidence for involvement of GNB1L in autism

    Get PDF
    Structural variations in the chromosome 22q11.2 region mediated by nonallelic homologous recombination result in 22q11.2 deletion (del22q11.2) and 22q11.2 duplication (dup22q11.2) syndromes. The majority of del22q11.2 cases have facial and cardiac malformations, immunologic impairments, specific cognitive profile and increased risk for schizophrenia and autism spectrum disorders (ASDs). The phenotype of dup22q11.2 is frequently without physical features but includes the spectrum of neurocognitive abnormalities. Although there is substantial evidence that haploinsufficiency for TBX1 plays a role in the physical features of del22q11.2, it is not known which gene(s) in the critical 1.5 Mb region are responsible for the observed spectrum of behavioral phenotypes. We identified an individual with a balanced translocation 46,XY,t(1;22)(p36.1;q11.2) and a behavioral phenotype characterized by cognitive impairment, autism, and schizophrenia in the absence of congenital malformations. Using somatic cell hybrids and comparative genomic hybridization (CGH) we mapped the chromosome-22 breakpoint within intron 7 of the GNB1L gene. Copy number evaluations and direct DNA sequencing of GNB1L in 271 schizophrenia and 513 autism cases revealed dup22q11.2 in two families with autism and private GNB1L missense variants in conserved residues in three families (P = 0.036). The identified missense variants affect residues in the WD40 repeat domains and are predicted to have deleterious effects on the protein. Prior studies provided evidence that GNB1L may have a role in schizophrenia. Our findings support involvement of GNB1L in ASDs as well. © 2011 Wiley Periodicals, Inc
    corecore