302 research outputs found

    Investigation of the agricultural resources in Sri Lanka

    Get PDF
    The author has identified the following significant results. Several in-house capabilities were developed. The facilities to prepare color composites of excellent quality were developed, using bulk B/W 70 mm transparencies or 1:1,000,000 positive transparencies. These color composites were studied through optical devices on light tables. A zoom transfer scope was also added, enabling direct transfer of LANDSAT composite data on to base maps

    Control Space Reduction and Real-Time Accurate Modeling of Continuum Manipulators Using Ritz and Ritz-Galerkin Methods

    Get PDF
    To address the challenges with real-time accurate modeling of multi-segment continuum manipulators in the presence of significant external and body loads, we introduce a novel series solution for variable-curvature Cosserat rod static and Lagrangian dynamic method. By combining a modified Lagrange polynomial series solution, based on experimental observations, with Ritz and Ritz-Galerkin methods, the infinite modeling state space of a continuum manipulator is minimized to geometrical position of a handful of physical points (in our case two). As a result, a unified easy to implement vector formalism is proposed for the nonlinear impedance and configuration control. We showed that by considering the mechanical effects of highly elastic axial deformation, the model accuracy is increased up to 6%. The proposed model predicts experimental results with 6-8% (4-6 [mm]) mean error for the Ritz-Galerkin method in static cases and 16-20% (12-14 [mm]) mean error for the Ritz method in dynamic cases, in planar and general 3D motions. Comparing to five different models in the literature, our approximate solution is shown to be more accurate with the smallest possible number of modeling states and suitable for real-time modeling, observation and control applications

    A low [CII]/[NII] ratio in the center of a massive galaxy at z=3.7: witnessing the transition to quiescence at high-redshift?

    Get PDF
    Understanding the process of quenching is one of the major open questions in galaxy evolution, and crucial insights may be obtained by studying quenched galaxies at high redshifts, at epochs when the Universe and the galaxies were younger and simpler to model. However, establishing the degree of quiescence in high redshift galaxies is a challenging task. One notable example is Hyde, a recently discovered galaxy at z=3.709. As compact (r~0.5 kpc) and massive (M*~1e11 Msun) as its quenched neighbor Jekyll, it is also extremely obscured yet only moderately luminous in the sub-millimeter. Panchromatic modeling suggested it could be the first galaxy found in transition to quenching at z>3, however the data were also consistent with a broad range of star-formation activity, including moderate SFR in the lower scatter of the galaxy main-sequence (MS). Here, we describe ALMA observations of the [CII] 157um and [NII] 205um far-infrared emission lines. The [CII] emission within the half-light radius is dominated by ionized gas, while the outskirts are dominated by PDRs or neutral gas. This suggests that the ionization in the center is not primarily powered by on-going star formation, and could come instead from remnant stellar populations formed in an older burst, or from a moderate AGN. Accounting for this information in the multi-wavelength modeling provides a tighter constraint on the star formation rate of SFR=5018+2450^{+24}_{-18} Msun/yr. This rules out fully quenched solutions, and favors SFRs more than factor of two lower than expected for a galaxy on the MS, confirming the nature of Hyde as a transition galaxy. Theses results suggest that quenching happens from inside-out, and starts before the galaxy expels or consumes all its gas reservoirs. Similar observations of a larger sample would determine whether this is an isolated case or the norm for quenching at high-redshift. [abriged]Comment: Accepted for publication in A&A. 14 pages, 9 figure

    The MUSE-Wide Survey: Survey Description and First Data Release

    Get PDF
    We present the MUSE-Wide survey, a blind, 3D spectroscopic survey in the CANDELS/GOODS-S and CANDELS/COSMOS regions. Each MUSE-Wide pointing has a depth of 1 hour and hence targets more extreme and more luminous objects over 10 times the area of the MUSE-Deep fields (Bacon et al. 2017). The legacy value of MUSE-Wide lies in providing "spectroscopy of everything" without photometric pre-selection. We describe the data reduction, post-processing and PSF characterization of the first 44 CANDELS/GOODS-S MUSE-Wide pointings released with this publication. Using a 3D matched filtering approach we detected 1,602 emission line sources, including 479 Lyman-α\alpha (Lya) emitting galaxies with redshifts 2.9z6.32.9 \lesssim z \lesssim 6.3. We cross-match the emission line sources to existing photometric catalogs, finding almost complete agreement in redshifts and stellar masses for our low redshift (z < 1.5) emitters. At high redshift, we only find ~55% matches to photometric catalogs. We encounter a higher outlier rate and a systematic offset of Δ\Deltaz\simeq0.2 when comparing our MUSE redshifts with photometric redshifts. Cross-matching the emission line sources with X-ray catalogs from the Chandra Deep Field South, we find 127 matches, including 10 objects with no prior spectroscopic identification. Stacking X-ray images centered on our Lya emitters yielded no signal; the Lya population is not dominated by even low luminosity AGN. A total of 9,205 photometrically selected objects from the CANDELS survey lie in the MUSE-Wide footprint, which we provide optimally extracted 1D spectra of. We are able to determine the spectroscopic redshift of 98% of 772 photometrically selected galaxies brighter than 24th F775W magnitude. All the data in the first data release - datacubes, catalogs, extracted spectra, maps - are available on the website https://musewide.aip.de. [abridged]Comment: 25 pages 15+1 figures. Accepted, A&A. Comments welcom

    TMTDyn: A Matlab package for modeling and control of hybrid rigid–continuum robots based on discretized lumped systems and reduced-order models

    Get PDF
    A reliable, accurate, and yet simple dynamic model is important to analyzing, designing, and controlling hybrid rigid–continuum robots. Such models should be fast, as simple as possible, and user-friendly to be widely accepted by the evergrowing robotics research community. In this study, we introduce two new modeling methods for continuum manipulators: a general reduced-order model (ROM) and a discretized model with absolute states and Euler–Bernoulli beam segments (EBA). In addition, a new formulation is presented for a recently introduced discretized model based on Euler–Bernoulli beam segments and relative states (EBR). We implement these models in a Matlab software package, named TMTDyn, to develop a modeling tool for hybrid rigid–continuum systems. The package features a new high-level language (HLL) text-based interface, a CAD-file import module, automatic formation of the system equation of motion (EOM) for different modeling and control tasks, implementing Matlab C-mex functionality for improved performance, and modules for static and linear modal analysis of a hybrid system. The underlying theory and software package are validated for modeling experimental results for (i) dynamics of a continuum appendage, and (ii) general deformation of a fabric sleeve worn by a rigid link pendulum. A comparison shows higher simulation accuracy (8–14% normalized error) and numerical robustness of the ROM model for a system with a small number of states, and computational efficiency of the EBA model with near real-time performances that makes it suitable for large systems. The challenges and necessary modules to further automate the design and analysis of hybrid systems with a large number of states are briefly discussed

    Мониторинг воспроизводства и влияния фекального прогестерона на репродуктивную цикличность циклов самбарского оленя Шри-Ланки (Rusa unicolor unicolor)

    Get PDF
    Sambar deer hinds, estrus, progesterone, estrous cycle, Sri LankaThis study examines the length of the estrous cycle in 16 Sambar deer hinds in National zoological gardens in Dehiwala and Kegalle, Sri Lanka (NZGDK) assessed with the use of changes in progesterone concentrations, along with the changes in the profile of this hormone and by the visual estrus manifestations. The objectives of the present study were to characterize ovarian activity throughout the estrous cycle and the non-pregnant luteal phase of captive sambar deer in Sri Lanka. These objectives were achieved with the use of radioimmunoassay (RIA) to measure fecal concentrations of progesterone and visual estrus manifestation. Fecal samples were collected from non-pregnant sambar deer hinds (aged 2–4 years)over the period of six months on daily basis, both during breeding and non-breeding seasons. Estrous cycles were recorded in non-pregnant females, based on fecal progesterone concentrations. The average estrous cycle length was 26.1±2.08 days (mean ± SEM) and 2.10 ± 0.51 days in the inter-luteal phase.The average fecal progesterone concentrations attained the peak mid-luteal values of 2.74 ng mL–1. There appeared to be variation in fecal progesterone amplitude between animals and between dates, but the low frequency of sampling prohibited confirmation of trends. Behavioral estrus was detected only when the average progesterone concentrations were less than 0.07 ng mL–1. However, not all periods of depressed progesterone secretion were associated with the observed estrus. Behavioral estrus was detected in hinds when progesterone concentrations were less than 0.07 ng mL–1; a subsequent rise in progesterone indicated ovulation taking place at this time

    Compact to extended Lyman-α\alpha emitters in MAGPI: strong blue peak emission at z3z\gtrsim3

    Full text link
    We report the discovery of three double-peaked Lyman-α\alpha emitters (LAEs) exhibiting strong blue peak emission at 2.9 z\lesssim z \lesssim 4.8, in the VLT/MUSE data obtained as part of the Middle Ages Galaxy Properties with Integral Field Spectroscopy (MAGPI) survey. These strong blue peak systems provide a unique window into the scattering of Lyman-α\alpha photons by neutral hydrogen (HI), suggesting gas inflows along the line-of-sight and low HI column density. Two of them at z=2.9z=2.9 and z=3.6z=3.6 are spatially extended halos with their core regions clearly exhibiting stronger blue peak emissions than the red peak. However, spatial variations in the peak ratio and peak separation are evident over 25×2625\times 26 kpc (z=2.9z=2.9) and 19×2819\times28 kpc (z=3.6z=3.6) regions in these extended halos. Notably, these systems do not fall in the regime of Lyman-α\alpha blobs or nebulae. To the best of our knowledge, such a Lyman-α\alpha halo with a dominant blue core has not been observed previously. In contrast, the LAE at z4.8z\sim4.8 is a compact system spanning a 9×99\times9 kpc region and stands as the highest-redshift strong blue peak emitter ever detected. The peak separation of the bright cores in these three systems ranges from Δpeak370\Delta_{\mathrm{peak}}\sim370 to 660660 km/s. The observed overall trend of decreasing peak separation with increasing radius is supposed to be controlled by HI column density and gas covering fraction. Based on various estimations, in contrast to the compact LAE, our halos are found to be good candidates for LyC leakers. These findings shed light on the complex interplay between Lyman-α\alpha emission, gas kinematics, and ionising radiation properties, offering valuable insights into the evolution and nature of high-redshift galaxies.Comment: 2 Figures, 1 Table, accepted for A&A Letter

    General Aspects of PT-Symmetric and P-Self-Adjoint Quantum Theory in a Krein Space

    Get PDF
    In our previous work, we proposed a mathematical framework for PT-symmetric quantum theory, and in particular constructed a Krein space in which PT-symmetric operators would naturally act. In this work, we explore and discuss various general consequences and aspects of the theory defined in the Krein space, not only spectral property and PT symmetry breaking but also several issues, crucial for the theory to be physically acceptable, such as time evolution of state vectors, probability interpretation, uncertainty relation, classical-quantum correspondence, completeness, existence of a basis, and so on. In particular, we show that for a given real classical system we can always construct the corresponding PT-symmetric quantum system, which indicates that PT-symmetric theory in the Krein space is another quantization scheme rather than a generalization of the traditional Hermitian one in the Hilbert space. We propose a postulate for an operator to be a physical observable in the framework.Comment: 32 pages, no figures; explanation, discussion and references adde

    Bio-Inspired Tactile Sensor Sleeve for Surgical Soft Manipulators

    Get PDF
    Robotic manipulators for Robot-assisted Mini- mally Invasive Surgery (RMIS) pass through small incisions into the patient’s body and interact with soft internal organs. The performance of traditional robotic manipulators such as the da Vinci Robotic System is limited due to insufficient flexibility of the manipulator and lack of haptic feedback. Modern surgical manipulators have taken inspiration from biology e.g. snakes or the octopus. In order for such soft and flexible arms to reconfigure itself and to control its pose with respect to organs as well as to provide haptic feedback to the surgeon, tactile sensors can be integrated with the robot’s flexible structure. The work presented here takes inspiration from another area of biology: cucumber tendrils have shown to be ideal tactile sensors for the plant that they are associated with providing useful environmental information during the plant’s growth. Incorporating the sensing principles of cucumber tendrils, we have created miniature sensing elements that can be distributed across the surface of soft manipulators to form a sensor network capable of acquire tactile information. Each sensing element is a retractable hemispherical tactile measuring applied pressure. The actual sensing principle chosen for each tactile makes use of optic fibres that transfer light signals modulated by the applied pressure from the sensing element to the proximal end of the robot arm. In this paper, we describe the design and structure of the sensor system, the results of an analysis using Finite Element Modeling in ABAQUS as well as sensor calibration and experimental results. Due to the simple structure of the proposed tactile sensor element, it is miniaturisable and suitable for MIS. An important contribution of this work is that the developed sensor system can be ”loosely” integrated with a soft arm effectively operating independently of the arm and without affecting the arm’s motion during bending or elongation
    corecore