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Control Space Reduction and Real-Time Accurate
Modeling of Continuum Manipulators Using Ritz

and Ritz-Galerkin Methods
S.M.Hadi Sadati1, S. Elnaz Naghibi2, Ian D. Walker3, Kaspar Althoefer2, Thrishantha Nanayakkara4

Abstract—To address the challenges with real-time accurate
modeling of multi-segment continuum manipulators in the pres-
ence of significant external and body loads, we introduce a
novel series solution for variable-curvature Cosserat rod static
and Lagrangian dynamic methods. By combining a modified
Lagrange polynomial series solution, based on experimental
observations, with Ritz and Ritz-Galerkin methods, the infinite
modeling state space of a continuum manipulator is minimized to
geometrical position of a handful of physical points (in our case
two). As a result, a unified easy to implement vector formalism is
proposed for the nonlinear impedance and configuration control.
We showed that by considering the mechanical effects of highly
elastic axial deformation, the model accuracy is increased up to
6%. The proposed model predicts experimental results with 6-
8% (4-6 [mm]) mean error for the Ritz-Galerkin method in static
cases and 16-20% (12-14 [mm]) mean error for the Ritz method in
dynamic cases, in planar and general 3D motions. Comparing to
five different models in the literature, our approximate solution is
shown to be more accurate with the smallest possible number of
modeling states and suitable for real-time modeling, observation
and control applications.

Index Terms—Flexible robots, Soft Material Robotics, Dynam-
ics, Motion Control, Force Control.

I. INTRODUCTION

TAKING inspiration from biological examples such as the
octopus arms, chameleon tongues and elephant trunks,

researchers are looking into the possibility of replicating simi-
lar maneuverability and grasping characteristics by harnessing
the corresponding hyper-redundancy demonstrated in nature
[1]. The class of continuum robots promises considerable
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Fig. 1. A STIFF-FLOP continuum actuator module in experiments with
significant external loads (a), module structure details (b).

performance improvements in different areas which currently
witness the presence of traditional robots, such as surgical
applications, underwater manipulation and inspection, etc.
[2], [3], [4]. Real-time accurate modeling, observation and
controller design suitable for this class of manipulators are
shown to be complex and challenging tasks due to their high
dexterity and deformability [5].

A Continuum manipulator model is described using a gen-
eral kinematic map for the deformation-configuration relation
and a robot-specific mechanical map for the loads-deformation
relation. The Constant curvature (CC) model, which is the
most common assumptions in continuum robotic research,
simplifies the kinematics of a continuum manipulator by ex-
pressing the backbone deformation as a planar CC profile [5].
Although being commonly used as a simplifying assumption,
the CC assumption suffers from local singularities and low
accuracy in the presence of significant body and external loads.
Variable curvature (VC) [6], [7] and identification based series-
solutions [8] provide more accurate singularity free kinematic
maps. The dynamic models introduced in the literature to
provide a better modeling accuracy can be categorized into
six groups, a comparative study of which in comparison with
experiments is presented in [9]. 1) Lumped system Lagrange
dynamics with discrete VC kinematics, similar to a series rigid
link mechanism, where a series of finite or infinite number of
rigid disks are interconnected using compliant joints [10]. 2)
Euler-Bernoulli beam mechanics with CC [11] or discrete VC
kinematics [12]. 3) Continuum form of Lagrange dynamics
[8], [13] or the Principle of Virtual Work (PVW) [14], [15]
using CC, continuous VC or series-solutions as kinematic
maps, where the kinematic map parameters are the dynamic
model states. 4) Cosserat rod model [6], [16] and beam theory
method, as a simplified version of that [9], which result in a
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boundary value problem (BVP) to be solved using numerical
optimization methods [6], [17]. 5) approximate identification
based series-solutions where coefficients of a simple [18] or
complex [19] series solutions are identified using experimental
results to construct a hardware-specific model. 6) Numerical
finite element methods using Euler-Bernoulli [20] or Galerkin
weak-form series-solution [21] for the manipulator mechanics
and VC kinematics.

The identification based models are more accurate and
computationally efficient; however, their validity is limited
to their experiment conditions, external loads, input values
and training data set [19], [8]. Besides, they do not account
for the structural characteristics necessary for dealing with
unknown conditions and design optimization [9]. On the other
hand, the lumped system and Cosserat rod models provide
a general solution, but not suitable for control design due
to high computational cost and large number of modeling
states. Use of series-solution based models for identification
of kinematic map by Godage [8] have shown to be real-
time but with a complex hard to interpret shape function
and limitations related to identification based methods. Series-
solution based Galerkin method for static modeling of complex
deformation in a discretized finite element domain by Tunay
[21] is accurate and comprehensive, but with a complex shape
function and limitations related to finite element and Cosserat
rod method.

Accuracy of these methods is compared based on their
forward control performance [9] and a feedback term, such
as PID, should be considered in the controller design to deal
with real working disturbances. The large modeling state space
results in difficulties with impedance observation and control
which are essential for safe surgical, inspection and human-
robot interaction applications.

In our previous research [14], [15], we introduced a new
geometry deformation based approach for the inverse static
model of braided continuum manipulators. We utilized the
experimental observation of the deformed cross-section to
model the deformation energy of the continuum media and to
show the importance of considering the cross-section highly
elastic deformation, using the PVW and the CC kinematics
in [14] and Cosserat rod method with VC kinematics in [9].
For the first time, our model provides an accurate semi-
analytical solution for the manipulator cross-section defor-
mation to increase the modeling accuracy, especially in the
presence of regional coaxial homogeneous stiffness variation
in the cross-section. There, different modeling assumptions are
investigated, showing the advantageous of an exact analytical
solution for design optimization based on sensitivity analysis
of structural parameters. However, a controller was hard to
design due to the infinite number of the modeling states.

In this paper, 1) we introduce a model with finite number of
states while preserving the modeling accuracy and generality
based on which the design of a nonlinear impedance and
configuration feedback controller is possible; 2) the solution is
extended to the dynamic case based on a vector formalism for
PVW, in general 3D motions of a multi-segment manipulator;
3) the modeling accuracy is increased by considering the
mechanical effects of the manipulator axial highly elastic

deformation as well as in the planar direction. We introduce a
novel, accurate yet real-time approximate series-solution for
the Cosserat beam method in the static case and a PVW
based model in the dynamic case for the general 3D motion
of a multi-segment continuum manipulator in the presence
of significant external and body loads. Based on the exper-
imental observations, a modified Lagrange polynomial, as a
differentiable polynomial of finite order, is chosen to drive a
weak-form series-solution for the mechanics of a continuum
manipulator using continues Ritz and Ritz-Galerkin methods.
To the best of our knowledge and compared to the most recent
similar research in the field [17], this is the first time that
the infinite modeling state space of such problem minimizes
to the geometrical positions of two points at the tip and in
the middle of the manipulator. As a result, different dynamic
impedance and configuration control scenarios are formulated
using traditional nonlinear control theories in a unified and
easy to implement vector formalism. We neglect the close
loop terms in the first part to highlight the performance and
accuracy of our method. A PID term is incorporated it in
the inverse control model later. Modeling results are verified
against experimental results in the static and dynamic cases.
The proposed model is the most accurate mechanics of materi-
als based model with the smallest possible number of modeling
states compared to the other well-known approaches in the
literature [9] and can be used for precise static and dynamic
modeling, observation and control in real-time applications.

In the following sections, first, the modeling framework
is discussed consisting of the VC kinematics, the Cosserat
and beam theory static model and PVW dynamic model. The
Ritz and Ritz-Galerkin series solutions are detailed in section
III for static and dynamic models followed by a vector form
derivation for the nonlinear control and observation problems
in section IV. Experiments and discussion are described in
section V and conclusions are presented in section VI.

II. MODELING FRAMEWORK

Slenderness and compliance of most continuum manipula-
tors make the external and body forces important in the model-
ing of their behavior. We use VC kinematics to relate a series-
solution geometry in 3D space (∈ R3) to the local strains,
curvatures and torsion that are found from the Cosserat rod
static model and to calculate the PVW terms for the dynamic
model. To incorporate the mechanical effect of the manipulator
highly elastic deformation, we assume a symmetric uni-axial
deformation for the constant volume manipulator to update the
deformed cross-section radius (r), area (a), moment of inertia
or second moment of area (J), elasticity (E) and shear (G)
modulus as rd = r/

√
λd̂1 , ad = a/λd̂1 , Jd = J/λ2

d̂1
and

E|Gd = E|G/λd̂1 , where λd̂1 is the local axial stretch and
the deformed state is shown by subscript ( d) [22], [9]. The
pneumatic chamber cross-section is assumed to be constant
due to dense braiding [14], [23]. Dependent variables are
functions of space and time (s, t) unless specified.

A. Variable Curvature Kinematics
The VC kinematics use curvilinear frames, [d̂2, d̂1, d̂3] for

cross-section physical frame or [n̂, t̂, b̂] for Frenet− Serret
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Fig. 2. Variable curvature kinematics and the Cosserat model free body
diagram for one element. [d̂2, d̂1, d̂3] is the physical, [n̂, t̂, b̂] is the
Frenet− Serret and [x, y, z] is the inertial frame. Subscript Lt, L and b
are for the tip load, general external load and body load respectively.

frame (Fig. 2), to represent the continuum manipulator back-
bone as a series of infinitesimal CC curves [7], [16], [6].
VC Kinematics present the relation between the physical
curvilinear coordinates ([d̂2, d̂1, d̂3]) and the curve spatial
configuration (ρ) expressed in inertial Cartesian coordinates
([̂i, ĵ, k̂]). The physical frame [d̂2, d̂1, d̂3], where d̂1 is
tangent to the backbone and d̂2 is alongside the first air
pressure chamber, is used in the forward VC kinematics. A
3× 3 rotation matrix (R) relates the local linear strains in the
physical curvilinear coordinates (v) to the spatial derivative of
the manipulator geometry in the inertial Cartesian coordinates
(ρ,s) as

ρ,s = Rv + d̂1 = R(v + [0, 1, 0]T), (1)

where subscript ( ,x) means partial differentiation w.r.t. vari-
able x. The spatial derivative of R is found based on the local
curvatures and torsion (u)

R,s = R [u]×, (2)

and the angular velocity of each element is [ω]× = R,tR,
where [ ]× is an operator to create a skew symmetric matrix.
The curvilinear and Cartesian coordinates are aligned at the
manipulator base (s = 0) where ρ0 = 0, R0 = I and I is a
3× 3 unit matrix.

For the inverse VC kinematics, where the manipulator
geometry is known as ρ∗, we use Frenet− Serret curvilinear
frames with tangent (t̂), normal (n̂) and binormal (b̂) unit
vectors. Here, b̂ expresses the direction of the local bending
vector. The rotation matrix to relate Frenet− Serret to Carte-
sian coordinates is R∗ = [n̂, t̂, b̂], where t̂ = ρ∗,s/|ρ∗,s|, n̂ =

t̂,s/|t̂,s| and b̂ = t̂ × n̂. Unlike curvilinear frames in the
forward VC kineamtics (R); for the Frenet− Serret frame
in the inverse VC kinematics (R∗), the frame local twist
around t̂ is a combination of a physical geometrical twist due
to torsional stresses and a purely mathematical twist due to
the side bending of the modules based on the mathematical
definition of b̂. To cancel the mathematical twist and to find
the physical curvilinear frame ([d̂2, d̂1, d̂3]), we use

R∗r = R∗.Π
np

i=1R
T
φi
, (3)

where Π is the post-multiplication operator, np is the segment
number, Rφ is a 3 × 3 rotation matrix around ĵ, φ =
atan(

√
3(p2 + p3 − 2p1)/(p2 − p3)) − π/2 is the angle of

the bending plane due to internal pressure in the local cross-
section plane [5] and p is the pressures vector in a pneumatic
actuator [5] or tendon forces vector in a tendon driven design
[3], [4]. Unlike [6], There is no need for a transformation
between the segments. The relationship of v and u with the
loads is found from the system mechanical map.

B. Static Model: Cosserat Rod and Beam Theory

The Cosserat rod model derives the equilibrium between the
forces in an infinitesimal element of a continuum media using
a free body diagram as in Fig. 2 and expressed in the inertial
frame [7]

n,s + f = σacdρ,tt (4)
m,s + ρ,s × n+ τ = Jmdω,t,

where f and τ are the uniform distributed force and torque
on the element, σ is the material density, acd is the cross-
section deformed area, Jmd is the the deformed cross-section
moment of inertia and ω is the element angular velocity. The
time-dependent acceleration terms (ρ,tt and ω,t) are zero in a
static model. Hooke’s law for the linear stress-strain relation
is used to relate the spatial derivative of the element boundary
force (n,s) and moment (m,s) to [v , u] as

n = Kvv, m = Kuu, (5)

where Kv = diag(ac[G,E,G]) and Ku =
diag([EJd̂2 , GJd̂1 , EJd̂3 ]) are diagonal stiffness matrices in
the physical curvilinear frame, and the module active cross-
section area (ac) and second moments of area (Jd̂1 , Jd̂2 , Jd̂3 )
are

ac = π(r2c2 − r
2
c1 − 6r2p1

), (6)

Jo = π/4(r4c2 − r
4
c1 − 6r4p1

), Jd̂1 = 2Jo − 6apr
2
o,

Jd̂2|d̂3 = Jo − 2apr
T
Jd̂2|d̂3

.rJd̂2|d̂3 ,

where ap = πr2p is the pressure chamber cross-section area,
rJd̂2|d̂3 = ro[S|C(0), S|C(2π/3), S|C(−2π/3)]

T and S|C(x) =

sin|cos(x). Substituting Eq. (4) in (5) and rearranging to find
v,s and u,s as a function of the loads, results in a static
mechanical map [7] for which a simple derivation for the
planar case is presented in [6].

To integrate the BVP formed by combining the static and
kinematics map in (Eq. (1-5)) [7] over time and space, the
initial boundary values for the system states (u , v , ρ , R) are
needed. Initial values for ρ and R are known at the manipulator
base (s = 0), while u and v are known at the tip (s = l). A
numerical solver can be used to find initial boundary values in
the equilibrium point at one of manipulator ends. Alternatively,
a discrete finite element approach can be used to solve a large
algebraic equation for all the elements’ states at once. Duriez
presented a real-time approach for this problem using the
sparse format of the coefficient matrices[20]. Both methods
are not suitable for control and design purposes due to high
computational cost.
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Beam theory method is a simpler approach based on the
resultant stresses due to the loads at each element which results
in the same equations as the Cosserat rod method, but for v
and u, unlike v,s and u,s in Eq. (4) and (5).

v = Kvd
−1.
(
R∗Tr . (fb + fL) + fp

)
(7)

u = Kud

−1.
(
R∗Tr . (τb + τL) + τp

)
,

where fL is the external load exerting at s = sL, sL > s,
fb = σac(l−s)gĵ is the body weight load, fp = pap.[0, 1, 0]T

is the pneumatic pressure force, τL =
(
ρ(sL) − ρ(s)

)
×fL is the

moment of fL, τb = σac
∫ l
s

(
ρ(s) − ρ(ε)

)
dε× gĵ is the body

weight moment, τp = pap.[rJd̂2 , 0, rJd̂3 ]d is the pneumatic
pressure moment and λd̂1,s = vd̂1 + 1. vd̂1 from the previous
integration step is used in λd̂1,s to prevent added nonlinearity
to the equations. The downside of the beam theory approach
is that we need to guess the equilibrium geometry to find
the cross-sections’ load, compared to the Cosserat rod model
where only the initial boundary values are needed. However, it
is suitable for the forward spatial and time integration using an
approximate series-solution (ρ∗). Note that R∗r is used in Eq. 7
for the mechanical map; and R is used in Eq. 1-2 to solve the
forward kinematic map. In the equilibrium state, the geometry
found from the forward kinematic map (ρ) should mach the
guessed geometry (ρ∗), used for the inverse kinematic in the
mechanical map (ρ ≈ ρ∗).

C. Dynamic Model: Principle of Virtual Work

Among all possible changes in the states of a system,
the system follows the one set that minimizes the system
action (w). This is known as the Principle of Virtual Work
or the Principle of Least Action. The spacial integration over
the backbone from the summation of all the virtual works
in one element of the continuum manipulator maintains an
equilibrium

0 =

∫
s

(
∑
i

dwi,q), (8)

where dwi,q is the differential virtual work of the ith action
in each element derived using the corresponding load (f ) and
virtual displacement (x,q) vector as dwq = f.xT,q .

The gas pressure virtual work (dwp,q = Cp,qpds, where
Cp = Cpv,q + Cpu,q) is the summation of the axial virtual
work with

Cpv,q = ap[1, 1, 1]Tvd̂1,q, (9)

and the bending virtual work is

Cpu,q = ap(rJd̂2d
ud̂2,q + rJd̂3d

ud̂3,q). (10)

The body shell virtual work (dwc,q = dwcv,q + dwcu,q),
including the actuators’ chamber body, is the summation of
the axial virtual work

dwcv,q = Edacdvd̂1vd̂1,qds, (11)

using the Euler-Bernoulli linear stress-strain assumption or

dwcv,q = (E/6)acd((vd̂1 + 1)2 + 2/(vd̂1 + 1)− 3),qds, (12)

based on the Neo-Hookean method assuming a symmetric uni-
axial deformation [14], [22], and the bending virtual work

dwcu,q = Kud
uu,qds, (13)

using the Euler-Bernoulli assumption.
The virtual work of the gravitational body load is

dwb,q = σacgy,qds. (14)

The virtual work due to an external force (dwL,q =
CfL,qfLds) and torque (dwτL,q = CτL,qτeds) expressed in
the inertial frame and exerting at s = sL with 0 ≤ s ≤ sL are

CfL,q = ρ,sq, CτL,q = u,q. (15)

A vector form for the body inertia virtual work can be found
using the TMT method [24]. Here, the position vectors in
the Cartesian space (ρ) are mapped to the state space (q) by
T = [ρ,q ω̄]T, where ω̄ is found by rearranging ω as ω =
ω̄q,t. The mass matrix for disk elements with an infinitesimal
thickness is dM = diag([ [1 1 1]ac Jd ])σds. Following the
TMT derivations in [24], the transformed mass matrix is

dMq = TTdMTds, (16)

and the coefficient matrix for the velocity dependent terms is

dDm,q = TTdM(Tq,t),qds. (17)

Then, we have ddm,q = dDm,qq,t, and the total inertial virtual
work is dwm = (dMqq,tt + ddm,q)ds.

The linear and angular viscous damping of the material is
dwµ,q = Cµq,tds, where

Cµ = [v u]T,qdiag([µv µu])[v u],q, (18)

where µv and µu are the material linear and rotational viscous
damping coefficient.

The vector form of the dynamic EOM in each element is

Acceleration︷ ︸︸ ︷
dMqq,tt +

Velocity Dependent︷ ︸︸ ︷
(ddm,q+dwµ,q)q,t +

ConservativeActions︷ ︸︸ ︷
dwc,q − dwb,q (19)

= dwp,q + dwfL,q + dwτL,q︸ ︷︷ ︸
Non−conservativeActions

,

which is integrated along the backbone curve at each time
step. We use a trapezoidal rule for the spatial and a 4th order
Runge-Kutta method for the time numerical integration.

III. RITZ AND RITZ-GALERKIN METHODS

Direct single shooting, multiple shooting and concatenation
methods are used to find weak-form solutions for a BVP, in
which the separation of variables method is used to separate
the time and space domains and makes the forward integration
possible. Using the direct single shooting method, an approx-
imate series-solution is assumed for the backbone kinematics
(ρ∗) with a finite number of terms that satisfies the initial and
boundary conditions

ρ∗ =
∑
i

c(t)iψ(s)i, (20)

where c(t)i is a time dependent coefficient which is constant
in the static case and ψ(s)i is a spatial shape function.
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Based on the Ritz method for BVPs, widely being used
in the finite element analysis [25], Eq. 20 is substituted
in the BVP equation, Eq. 7 for the static or Eq. 19 for
dynamic model, and the coefficients (c(t)i) that approximate
the BVP with minimum error are found. Numerical nonlinear
solvers, i.e. Matlab ”fsolve” function, can be used to find the
coefficients (ci) that minimize the approximation error in the
static case. The coefficients’ time series (c(t)i) are found from
the time numerical integration of the EOM in the dynamic
case.

A better approximation is possible with the Continuous
Galerkin method of weighted residuals, known as the Ritz-
Galerkin method, where the weighted residuals of the system
are minimized instead of the system function itself. The shape
functions (ψ(s)i) are considered as the weighting functions
(Wi = ψ(s)i) for the Ritz-Galerkin method [25]. The weighted
version of Eq. (1) for the static case is

0 =

∫ l

0

Wρ∗,sds−
∫ l

0

WR(v + [0, 1, 0]T)ds, (21)

where W is the weighting matrix and each coordinate equation
is weighted with the shape functions of the same coordinate
in the series-solution. In the dynamic case, both sides of Eq.
(19) is multiplied by (W.T ) to transfer the EOM from the
generalized state space (q) to the Cartesian state space and
weight the equation for each coordinate with the corresponding
weighting functions.

Tunay used the Galerkin series-solution in a discrete fi-
nite element domain for numerical simulation of the static
deformation and inflation of continuum manipulators in the
presence of conservative forces. He achieved a two order of
magnitude improve in the computation efficiency compared to
a common large deformation finite element model. However,
the choice of a 7-D linear shape function and the discrete
finite element approach make his method hard to be inter-
preted physically and unsuitable for inverse mechanics, path
planning, control and stability analysis.

Based on experimental observations, we present a continu-
ous and easy to interpret series solution where the coefficients
of a series of Lagrange polynomial shape functions are as-
sumed to be the system states (q = c(t)) for optimization
in the static case or for time integration in the dynamic
case. A Lagrange polynomial (ρ∗) is fit to three points,
at the manipulator base (ρ(0,t) = [x0, y0, z0] = [0, 0, 0]),
middle (ρ(l/2,t) = [x1(t), y1(t), z1(t)]) and at the tip (ρ(l,t) =
[x2(t), y2(t), z2(t)]) of the form

ρ∗ =
2∑
j=0

(
ψj(s).[ xj(t) , yj(t) , zj(t) ]T

)
, (22)

ψj(s) = Cψ.
∏
m

(
s− sm
sj − sm

)
, 0 ≤ m ≤ N, m 6= j.

where Cψ = diag([s/sj , 1, 1]) is a modification coefficient
guaranteeing the manipulator axis to be perpendicular at the
base (t̂0 = ĵ), the points’ position vector (q = c(t) =
[x1(t), y1(t), z1(t), x2(t), y2(t), z2(t)]) is the constant coefficients
in the static model or the time dependent coefficients as the
system generalized state vector for the dynamic model, ψj(s)

is the shape function and the weighting matrix for the Ritz-
Galerkin method is W = [ψ1(s), ψ2(s)]

T.

IV. NONLINEAR CONTROL AND OBSERVATION

A unified vector form for the modeling, nonlinear control
and observer design, based on feedback linearization method
is derived. Defining the input pressure and external load vector
as the system states and adding algebraic constraints for the
desired controls to the system EOM, for Eq. (19) after the
spatial integration, we have

[
Mq −[Cp CfL CτL ]
A1 A2

]
q,tt
qp
qfL
qτL

 = (23)

[
−dm,q − wc,q + wb,q − wµ,q

B

]
,

where A1 and A2 are matrices resulting from algebraic
relations for the constraint or desired controls, B is the
desired and/or input value vector, qp, qfL and qτL are the
input pressure, external force and torque vector, introduced as
system states. The coefficient matrix is [3nq + 9]× [3nq + 9],
A1 is a 9 × 3nq and A2 is a 9 × 9 matrix and B is a 9 × 1
vector where nq is the number of states. A and B are adjusted
according to the required modeling, control and/or observation
tasks and can be switched easily to achieve complex control
strategies. Eq. (23) is numerically integrated w.r.t time by
having the initial values for [q, qp, qfL , qτL ]. The control
or observation values for [qp, qfL , qτL ] is found by two times
numerical differentiation of the integration results w.r.t time,
since they are already integrated twice alongside the system
EOM.

For simple forward simulation we have A1 = 0, A2 = I
and B = [p fL τL]T, where I is the identity matrix. In
the case of tip position control in the presence of external
loads, we have A1(3nq + 1, nq) = 1, A1(3nq + 2, 2nq) =
1, A1(3nq + 3, 3nq) = 1, A2(3nq + 4 : (end), 4 : 9) = I and
B = [(ρtiph,tt + pid) fL τL]T, where ρtiph,tt is the desired
tip position and pid is a PID or any other feedback control
term. Configuration control can be achieved by changing A1

to control the position vector of any other intermediate point
on the backbone.

Force control at the tip using the pressure inputs and
for a known tip torque (τL) and position profile (ρtip,tt) is
possible by setting A1(3nq + 1, nq) = 1, A1(3nq + 2, 2nq) =
1, A1(3nq + 3, 3nq) = 1, A2(3nq + 4 : end, 4 : 9) = I for the
tip vector position control and B = [ρtip,tt (fLh

+ pid) τL]T,
where fLh

is the desired force vector. For the tip torque control
(τLh

), we have the same A matrix with B = [ρtip,tt f(τLh
+

pid)]T.
Simultaneous force and position control is possible by

fast enough switching between different control scenarios or
having a combination of non-overlapping force and position
directions to derive a proper control matrix set for.

Shape-based force estimation is possible by proper adjust-
ment of the matrices. For example, for the tip force estimation
based on the tip position vector we have A1(3nq + 4, nq) =
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TABLE I
STIFF-FLOP PARAMETERS.

Sym. Value Sym. value Sym. value
rp1 [mm] 2.5 rp2 [mm] 3.0 ro [mm] 8.5 (9)†
rc2 [mm] 12.5 (12) rc1 [mm] 4.5 l [mm] 44
lfs [mm] 10 (17) m [gram] 24.5 me [gram] 11 (2)
g
[
m/s2

]
9.81 E [KPa] 205‡ σ

[
Kg/m3

]
1300

µu [Nms/rad] 4e-5‡ µv [Ns/m] 1e-3‡
†Values in brackets are for the tests with 3D deformation (Fig. 4d,e).
‡Parameters found from identification to minimize the simulation errors.

1, A1(3nq + 5, 2nq) = 1, A1(3nq + 6, 3nq) = 1, A2(3nq + 1 :
3nq + 3, 1 : 3) = I, A2(3nq + 7 : 3nq + 9, 7 : 9) = I and
B = [p (ρtip,tt+ pid) τL]T, in which the known tip geometry
is assumed as geometrical constraint and the PID term is for
numerical analysis error compensation, and not as a term for
physical feedback control.

V. EXPERIMENTAL RESULTS AND DISCUSSION

We used a STIFF-FLOP (STIFFness controllable Flexible
and Learn-able manipulator for surgical OPerations) pneu-
matic actuator module [26] as a standard, simple yet accurate
and durable design without inhomogeneous deformations, i.e.
due to structure swallow. A similar design is used in recent
research [5], [6], [17]. The measured and identified structural
parameters are presented in Table I with an experimental
setup similar to the one in [14], [15] (Fig. 1). We choose
STIFF-FLOP modules because of their high repeatability and
negligible performance change due to aging and fatigue during
the experimental trials. However, accurate modeling of these
modules are challenging due to inhomogeneities as a result of
the fabrication process.

Experimental conditions and inputs are used in the simula-
tions where Matlab ”fsolve”, ”ode113” and ”fmincon” are used
for direct single shooting optimization, time integration and
parameter identification. 33 static points and 100 [s] dynamic
motion recorded data of a module in planar motion with
extensive external load (Fig. 1 and 3) and 43 static points
and 200 [s] dynamic motion recorded data of a multi-segment
manipulator in general 3D motion with one active module (Fig.
4.a-d and 5) are used to verify the accuracy of our model.
Seven points from the static test are used to identify E and
µv|u. Error is defined as the distance between the tip position
in the model and experiments divided by the initial length
of the manipulator as a reference length [6]. High external
load brings the manipulator to an ”S” shape configuration in
the planar motion case (Fig. 1). Using a polynomial of order
three, an average 6% (≈4 [mm]) mean error is observed for the
static model in the 2D and 8% (≈6 [mm]) in the 3D motion
using both the Ritz and Ritz-Galerkin method. For the Cosserat
beam method, Our model shows to be at least twist faster
and as accurate as a numerical interpolation solution with
the same number of nodes [9]. Despite Tunay’s conclusion,
a Galerkin solution that works fine in the static case cannot
easily be extended to a dynamic problem [21] and we found
that the Ritz-Galerkin solution in the dynamic case is not stable
and results in large errors, but the Ritz solution maintains a
mean error of 20% (≈14 [mm]) in the 2D and 16% (≈12

[mm]) in the 3D case throughout the dynamic test. The mean
accuracy of the Ritz and Ritz-Galerkin solutions are similar in
the static case with no significant different in the simulation
speed while the Ritz solution in dynamic case is more accurate
than for the static case, 14% in the planar and 8% in the
3D motion. This difference is due to large inertial effect
in the dynamic case which shows the need and importance
of a more accurate damping model to be considered in our
future work. The models are more accurate for lower input
pressures. Inaccuracy in the fabrication of the STIFF-FLOP
module causes that the experimental results show out of plane
deformation in the z direction in the planar motion and twist in
the general 3D motion, despite a symmetric actuation strategy
and planar external force. This deformation is not captured in
our model since any term to model the parameters’ inaccuracy
is not considered. Considering the effect of the manipulator
axial highly elastic deformation on the segments shear and
elasticity modulus results in a 6% increase in the model
accuracy; however, a higher value for the elasticity modulus
is identified compared to our previous works [14], [15], [9].
Our modeling results in the planar case shows to be the most
accurate solution compared to CC (31% error), PVW using
CC kinematics (28%), the Cosserat rod model (6-12%) and
the approximate solutions similar to [8] (11%) in the static
case and compared to the lumped system model (22% error)
in the dynamic case [9]. The series-solution with two points
(four states in a planar motion and six states in a general
3D motion) shows to be efficient and accurate enough to
predict the ”S” shape configuration of the manipulator under
significant external loads. However, simulations for general
3D motion of a multi-segment manipulator with two active
modules (Fig. 4.e) shows the different results from polynomial
of order four and five (Fig. 6). This shows the importance of
a proper choice for the polynomial order, especially where
the manipulator needs to perform in the confined maze-like
space of a minimally invasive surgery as the final goal of our
research. Using Matlab software on a regular laptop computer,
the direct single shooting algorithm usually takes about 2
[s] to find the equilibrium configuration for a single-curve
formation and 3 [s] for a double-curve formation (”S” shape)
in the static case, and almost the same time as the actual
experiment duration for the dynamic case. Compared to the
presented established methods in the literature, our method has
the highest static and a high dynamic modeling accuracy with
exceptional real-time computational performance which shows
the feasibility of real-time implementation of this approach
in real-world applications. Our weak-from solution provides a
powerful analytical means for sensitivity analysis of the model
performance w.r.t. the system parameters for structural design
optimization. We observed that a slight change in the module
cross-section dimensions affect the accuracy by 2% similar to
[15] while a change in the stiffness module, i.e. not considering
the elasticity reduction due to axial highly elastic deformation,
affect the accuracy by up to 6%. A detailed sensitivity analysis,
as in [15], will be carried out in the future of our research to
predict how inaccuracy in the model parameters can affect the
simulation results for a successful control system design. This
model is derived from a framework with coaxial homogeneity
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Fig. 3. Results for planar deformation of a module with extensive external load at the tip in static and dynamic case (Fig. 1): pressure inputs, external force
and torque at the tip, tip position time series and in the task space, simulation frames, and single shooting iterations for steps 4 and 9 in the static case.
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Fig. 4. Results for general 3D deformation of a multi-segment manipulator in static and dynamic case: pressure inputs (a) and tip position time series in
static (b) and dynamic (c) case for the manipulator with one actuated module (d), a manipulator with two actuated modules (e).
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in the manipulator cross-section and any other anomaly due to
fabrication, aging and fatigue with a stochastic nature will be
compensated with a feedback control term. These affects can
be addressed using statistical approach and by incorporating
stochastic terms in the future control model. A precise forward
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model contributes in increasing the stability, reducing the
controller gains, better estimation of the system states and
compensation of measurement noises. After using the absolute
error for the verification and comparison of our model in
the first step, we are going to investigate the performance
of our model (Eq. 23) for force estimation and control with
application in soft tissue palpation and stiffness imaging. A
continuum manipulator with 5-15 [gram-force] and 6-43%
estimation error, achievable with STIFF-FLOP modules [27],
is showed to be successful in such tasks [28]. The controller
repeatability and durability are important for such tasks which
we plan to address in our future work.

VI. CONCLUSION

In this paper, a modified Lagrange polynomial series-
solution, based on experimental observation, was presented to
produce a new technique for deriving the Cosserat rod static
and Lagrangian dynamic model of a continuum manipulator.
Our approach featured a small number of states (six in our
analysis) which are the Cartesian positions of two points on
the manipulator (at the tip and in the middle). We used a
direct single shooting method to solve the Cosserat rod static
model and forward numerical integration for the Lagrange
dynamic model using the Ritz and Ritz-Galerkin approaches.
A unified vector form for the manipulator Lagrange dynamics
was derived using which the modeling, control and observation
scenarios can be easily implemented by adjusting three control
matrices and a vector for the desired and input values. Noting
the importance of considering highly-elastic axial deforma-
tions of the manipulator, the Ritz method is found to be more
accurate in dynamic cases while the Ritz-Galerkin method is
slightly more accurate in static cases. The model is compared
with experimental results and five other well-known models
and shown to be the most accurate and efficient approach with
the smallest possible number of states, suitable for real-time
static and dynamic modeling and controller design. We plan
to use this method to control a continuum manipulator for
biological tissue palpation and stiffness imaging in medical
applications.
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