4,083 research outputs found

    Cell-type specific potent Wnt signaling blockade by bispecific antibody.

    Get PDF
    Cell signaling pathways are often shared between normal and diseased cells. How to achieve cell type-specific, potent inhibition of signaling pathways is a major challenge with implications for therapeutic development. Using the Wnt/β-catenin signaling pathway as a model system, we report here a novel and generally applicable method to achieve cell type-selective signaling blockade. We constructed a bispecific antibody targeting the Wnt co-receptor LRP6 (the effector antigen) and a cell type-associated antigen (the guide antigen) that provides the targeting specificity. We found that the bispecific antibody inhibits Wnt-induced reporter activities with over one hundred-fold enhancement in potency, and in a cell type-selective manner. Potency enhancement is dependent on the expression level of the guide antigen on the target cell surface and the apparent affinity of the anti-guide antibody. Both internalizing and non-internalizing guide antigens can be used, with internalizing bispecific antibody being able to block signaling by all ligands binding to the target receptor due to its removal from the cell surface. It is thus feasible to develop bispecific-based therapeutic strategies that potently and selectively inhibit signaling pathways in a cell type-selective manner, creating opportunity for therapeutic targeting

    Photo-to-heat conversion of broadband metamaterial absorbers based on TiN nanoparticles under laser and solar illumination

    Full text link
    We theoretically investigate photothermal heating of ultra-flexible metamaterials, which are obtained by randomly mixing TiN nanoparticles in polydimethylsiloxane (PDMS). Due to the plasmonic properties of TiN nanoparticles, incident light is perfectly absorbed in a broadband range (300-3000 nm) to generate heat within these metamaterials. Under irradiation of an 808 nm near-infrared laser with different intensities, our predicted temperature rises as a function of time agree well with recent experimental data. For a given laser intensity, the temperature rise varies non-monotonically with concentration of TiN nanoparticles because the enhancement of thermal conductivity and absorbed energy as adding plasmonic nanostructures leads to opposite effects on the heating process. When the model is extended to solar heating, photothermal behaviors are qualitatively similar but the temperature increase is less than 13 KK. Our studies would provide good guidance for future experimental studies on the photo-to-heat conversion of broadband perfect absorbers.Comment: 8 pages, 7 figures, accepted for publications in Materials Today Communication

    Defect-engineered metal-organic frameworks (MOF-808) towards the improved adsorptive removal of organic dyes and chromium (vi) species from water

    Get PDF
    In this work, two defective zirconium-based metal-organic frameworks (Zr-MOFs), MOF-808-OH and MOF-808-NH2, were synthesized by partially replacing the 1,3,5-benzenetricarboxylate building block with 5-hydroxyisophthalate and 5-aminoisophthalate, respectively. The structural features of the defective materials were analyzed by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), nitrogen physisorption at 77 K, and thermogravimetric analysis (TGA). Importantly, the number of defect sites determined via proton nuclear magnetic resonance (1H-NMR) analysis of the digested materials was approximately 7 mol% for MOF-808-OH and 3 mol% for MOF-808-NH2. The presence of the defect sites increased the number of acidic centers on Zr-clusters originating from missing-linker nodes which accounted for a remarkable adsorption capacity towards various anionic organic dyes and chromium (vi) species. Compared to standard MOF-808, the defect-engineered ones showed significant increments by 30-60% in trapping capacity for anionic contaminants including sunset yellow, quinoline yellow, methyl orange, and potassium dichromate, while they exhibited modest improvements by 5-15% in the removal of cationic dyes, namely malachite green and methylene blue

    Linear electric generation system to harvest vibration energy from a running vehicle

    Get PDF
    Methods to harvest energy that is wasted during road vehicle operation have been studied in recent years. Mechanical vibrations from vertical motion induced by road bumps dissipate a large amount of energy. A linear electric generation system is presented to harvest this energy. The system uses mechanical resonance to maximize the efficiency of harvesting. A shock absorber suspension and electric generator mathematical model were created to analyze the vibration characteristics induced by road bumps during vehicle operation. An electromagnetic simulation using the commercial software MAXWELL (Ver. 13, ANSOFT, USA) was performed to predict the electricity generation. Finally, the magnetic circuit design was optimized to improve the amount of electricity generated. The results demonstrate the possibility of using the proposed approach in practical applications

    Rapid methods to detect organic mercury and total selenium in biological samples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Organic mercury (Hg) is a global pollutant of concern and selenium is believed to afford protection against mercury risk though few approaches exist to rapidly assess both chemicals in biological samples. Here, micro-scale and rapid methods to detect organic mercury (< 1.5 ml total sample volume, < 1.5 hour) and total selenium (Se; < 3.0 ml total volume, < 3 hour) from a range of biological samples (10-50 mg) are described.</p> <p>Results</p> <p>For organic Hg, samples are digested using Tris-HCl buffer (with sequential additions of protease, NaOH, cysteine, CuSO<sub>4</sub>, acidic NaBr) followed by extraction with toluene and Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>. The final product is analyzed via commercially available direct/total mercury analyzers. For Se, a fluorometric assay has been developed for microplate readers that involves digestion (HNO<sub>3</sub>-HClO<sub>4 </sub>and HCl), conjugation (2,3-diaminonaphthalene), and cyclohexane extraction. Recovery of organic Hg (86-107%) and Se (85-121%) were determined through use of Standard Reference Materials and lemon shark kidney tissues.</p> <p>Conclusions</p> <p>The approaches outlined provide an easy, rapid, reproducible, and cost-effective platform for monitoring organic Hg and total Se in biological samples. Owing to the importance of organic Hg and Se in the pathophysiology of Hg, integration of such methods into established research monitoring efforts (that largely focus on screening total Hg only) will help increase understanding of Hg's true risks.</p

    Market based approaches for food safety and animal health interventions in smallholder pig systems: the case of Vietnam

    Get PDF
    Food safety and animal health concerns place rising burdens on smallholder pig production in Viet Nam, both in terms of negatively affecting livelihoods and profitability as well as reducing consumer confidence in pork. While reducing the incidence of pig disease and improving the safety of pork products are potentially important public goods, it is critical to take into account the tradeoffs between improved animal health and food safety outcomes and their associated costs

    Enhanced Generation of Induced Pluripotent Stem Cells from a Subpopulation of Human Fibroblasts

    Get PDF
    BACKGROUND: The derivation of induced pluripotent stem cells (iPSCs) provides new possibilities for basic research and novel cell-based therapies. Limitations, however, include our current lack of understanding regarding the underlying mechanisms and the inefficiency of reprogramming. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report identification and isolation of a subpopulation of human dermal fibroblasts that express the pluripotency marker stage specific embryonic antigen 3 (SSEA3). Fibroblasts that expressed SSEA3 demonstrated an enhanced iPSC generation efficiency, while no iPSC derivation was obtained from the fibroblasts that did not express SSEA3. Transcriptional analysis revealed NANOG expression was significantly increased in the SSEA3 expressing fibroblasts, suggesting a possible mechanistic explanation for the differential reprogramming. CONCLUSIONS/SIGNIFICANCE: To our knowledge, this study is the first to identify a pluripotency marker in a heterogeneous population of human dermal fibroblasts, to isolate a subpopulation of cells that have a significantly increased propensity to reprogram to pluripotency and to identify a possible mechanism to explain this differential reprogramming. This discovery provides a method to significantly increase the efficiency of reprogramming, enhancing the feasibility of the potential applications based on this technology, and a tool for basic research studies to understand the underlying reprogramming mechanisms

    Quantifying MRI frequency shifts due to structures with anisotropic magnetic susceptibility using pyrolytic graphite sheet

    Get PDF
    Magnetic susceptibility is an important source of contrast in magnetic resonance imaging (MRI), with spatial variations in the susceptibility of tissue affecting both the magnitude and phase of the measured signals. This contrast has generally been interpreted by assuming that tissues have isotropic magnetic susceptibility, but recent work has shown that the anisotropic magnetic susceptibility of ordered biological tissues, such as myelinated nerves and cardiac muscle fibers, gives rise to unexpected image contrast. This behavior occurs because the pattern of field variation generated by microstructural elements formed from material of anisotropic susceptibility can be very different from that predicted by modelling the effects in terms of isotropic susceptibility. In MR images of tissue, such elements are manifested at a sub-voxel length-scale, so the patterns of field variation that they generate cannot be directly visualized. Here, we used pyrolytic graphite sheet which has a large magnetic susceptibility anisotropy to form structures of known geometry with sizes large enough that the pattern of field variation could be mapped directly using MRI. This allowed direct validation of theoretical expressions describing the pattern of field variation from anisotropic structures with biologically relevant shapes (slabs, spherical shells and cylindrical shells)

    Calibration and Characterization of the IceCube Photomultiplier Tube

    Full text link
    Over 5,000 PMTs are being deployed at the South Pole to compose the IceCube neutrino observatory. Many are placed deep in the ice to detect Cherenkov light emitted by the products of high-energy neutrino interactions, and others are frozen into tanks on the surface to detect particles from atmospheric cosmic ray showers. IceCube is using the 10-inch diameter R7081-02 made by Hamamatsu Photonics. This paper describes the laboratory characterization and calibration of these PMTs before deployment. PMTs were illuminated with pulses ranging from single photons to saturation level. Parameterizations are given for the single photoelectron charge spectrum and the saturation behavior. Time resolution, late pulses and afterpulses are characterized. Because the PMTs are relatively large, the cathode sensitivity uniformity was measured. The absolute photon detection efficiency was calibrated using Rayleigh-scattered photons from a nitrogen laser. Measured characteristics are discussed in the context of their relevance to IceCube event reconstruction and simulation efforts.Comment: 40 pages, 12 figure
    • …
    corecore