466 research outputs found
Unruptured ovarian ectopic gestation: a rare clinical scenario
Ovarian pregnancy is a rare event, with the incidence ranging from 1 in 2000 to 1 in 60 000 deliveries and accounts for 3% of all ectopic pregnancies. The first case of ovarian pregnancy was published by Saint Monnisey. Authors report a case of a 23-year-old patient with severe lower abdominal pain following five weeks of amenorrhea diagnosed as tubal ectopic pregnancy on ultrasonography. The patient was taken up for emergency laparoscopy and unexpected finding of ovarian pregnancy was established. Early diagnosis and prompt treatment go a long way to prevent serious outcomes and to ensure favourable future reproductive potential
Studies on plasma treatment and priming of seeds of bell pepper (Capsicum annuum L.)
The present investigation was carried out at Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan during the year 2014 -2015 to study the “Effect of cold plasma treatment and priming on bell pepper (Capsicum annuum L. cultivar California Wonder) for seed germination and seedling vigour. The seeds were ex-posed to various durations of oxygen plasma treatment using glow discharge technique at FCIPT, Institute for Plas-ma Research, Gandhinagar, Gujarat, India. Seeds were pre-treated with power of 100 W for treatment durations of 0, 3, 6, 9, 12, 15 minutes for 0, 4, 8 and 12 month durations. The changes in surface morphology of plasma treated seeds were studied by Scanning Electron Microscopy (SEM) and Contact Angle Goniometer. Along with plasma treatment, seeds were also treated with standard priming method i.e osmoprimng for comparison. Results showed that plasma treatment alone as well as in combination with osmoprimng up to 6 minutes duration had positive effects on seed germination and seedling vigour. Germination and vigour indices significantly increased by 21.75% and 90.71% respectively. Characteristics of germination percentage, speed of germination, seedling vigour index-I & II, significantly increased by 13.92%, 1.39 cm, 0.38 mg, 322.07 respectively, compared with control. And it was found that immediately after plasma exposure the germination (84.41%) and vigour (228.50) was highest and it was reduced to (73.54%) and (174.27) after 12 months of storage. These results indicated that cold plasma treatment might promote the growth and modify the speed of germination i.e. higher speed of germination was observed in seeds exposed to plasma treat-ment for 6 minutes (59.82%), whereas, lowest germination speed (40.76%) was observed in untreated control
Photoluminescence dispersion as a probe of structural inhomogeneity in silica
We report time-resolved photoluminescence spectra of point defects in
amorphous silicon dioxide (silica), in particular the decay kinetics of the
emission signals of extrinsic Oxygen Deficient Centres of the second type from
singlet and directly-excited triplet states are measured and used as a probe of
structural inhomogeneity. Luminescence activity in sapphire
(-AlO) is studied as well and used as a model system to compare
the optical properties of defects in silica with those of defects embedded in a
crystalline matrix. Only for defects in silica, we observe a variation of the
decay lifetimes with emission energy and a time dependence of the first moment
of the emission bands. These features are analyzed within a theoretical model
with explicit hypothesis about the effect introduced by the disorder of
vitreous systems. Separate estimations of the homogenous and inhomogeneous
contributions to the measured emission linewidth are obtained: it is found that
inhomogeneous effects strongly condition both the triplet and singlet
luminescence activities of oxygen deficient centres in silica, although the
degree of inhomogeneity of the triplet emission turns out to be lower than that
of the singlet emission. Inhomogeneous effects appear to be negligible in
sapphire
Simulations of charge transfer in Electron Multiplying Charge Coupled Devices
Electron Multiplying Charge Coupled Devices (EMCCDs) are a variant of traditional CCD technology well suited to applications that demand high speed operation in low light conditions. On-chip signal amplification allows the sensor to effectively suppress the noise introduced by readout electronics, permitting sub-electron read noise at MHz pixel rates. The devices have been the subject of many detailed studies concerning their operation, however there has not been a study into the transfer and multiplication process within the EMCCD gain register. Such an investigation has the potential to explain certain observed performance characteristics, as well as inform further optimisations to their operation. In this study, the results from simulation of charge transfer within an EMCCD gain register element are discussed with a specific focus on the implications for serial charge transfer efficiency (CTE). The effects of operating voltage and readout speed are explored in context with typical operating conditions. It is shown that during transfer, a small portion of signal charge may become trapped at the semiconductor-insulator interface that could act to degrade the serial CTE in certain operating conditions
Diquat Derivatives: Highly Active, Two-Dimensional Nonlinear Optical Chromophores with Potential Redox Switchability
In this article, we present a detailed study of structure−activity relationships in diquaternized 2,2′-bipyridyl (diquat) derivatives. Sixteen new chromophores have been synthesized, with variations in the amino electron donor substituents, π-conjugated bridge, and alkyl diquaternizing unit. Our aim is to combine very large, two-dimensional (2D) quadratic nonlinear optical (NLO) responses with reversible redox chemistry. The chromophores have been characterized as their PF_6^− salts by using various techniques including electronic absorption spectroscopy and cyclic voltammetry. Their visible absorption spectra are dominated by intense π → π^* intramolecular charge-transfer (ICT) bands, and all show two reversible diquat-based reductions. First hyperpolarizabilities β have been measured by using hyper-Rayleigh scattering with an 800 nm laser, and Stark spectroscopy of the ICT bands affords estimated static first hyperpolarizabilities β_0. The directly and indirectly derived β values are large and increase with the extent of π-conjugation and electron donor strength. Extending the quaternizing alkyl linkage always increases the ICT energy and decreases the E_(1/2) values for diquat reduction, but a compensating increase in the ICT intensity prevents significant decreases in Stark-based β_0 responses. Nine single-crystal X-ray structures have also been obtained. Time-dependent density functional theory clarifies the molecular electronic/optical properties, and finite field calculations agree with polarized HRS data in that the NLO responses of the disubstituted species are dominated by ‘off-diagonal’ β_(zyy) components. The most significant findings of these studies are: (i) β_0 values as much as 6 times that of the chromophore in the technologically important material (E)-4′-(dimethylamino)-N-methyl-4-stilbazolium tosylate; (ii) reversible electrochemistry that offers potential for redox-switching of optical properties over multiple states; (iii) strongly 2D NLO responses that may be exploited for novel practical applications; (iv) a new polar material, suitable for bulk NLO behavior
Evolution of Linear Absorption and Nonlinear Optical Properties in V-Shaped Ruthenium(II)-Based Chromophores
In this article, we describe a series of complexes with electron-rich cis-{Ru^(II)(NH_3)_4}^(2+) centers coordinated to two pyridyl ligands bearing N-methyl/arylpyridinium electron-acceptor groups. These V-shaped dipolar species are new, extended members of a class of chromophores first reported by us (Coe, B. J. et al. J. Am. Chem. Soc. 2005, 127, 4845−4859). They have been isolated as their PF_6− salts and characterized by using various techniques including ^1H NMR and electronic absorption spectroscopies and cyclic voltammetry. Reversible Ru^(III/II) waves show that the new complexes are potentially redox-switchable chromophores. Single crystal X-ray structures have been obtained for four complex salts; three of these crystallize noncentrosymmetrically, but with the individual molecular dipoles aligned largely antiparallel. Very large molecular first hyperpolarizabilities β have been determined by using hyper-Rayleigh scattering (HRS) with an 800 nm laser and also via Stark (electroabsorption) spectroscopic studies on the intense, visible d → π^* metal-to-ligand charge-transfer (MLCT) and π → π^* intraligand charge-transfer (ILCT) bands. The latter measurements afford total nonresonant β_0 responses as high as ca. 600 × 10^(−30) esu. These pseudo-C_(2v) chromophores show two substantial components of the β tensor, β_(zzz) and β_(zyy), although the relative significance of these varies with the physical method applied. According to HRS, β_(zzz) dominates in all cases, whereas the Stark analyses indicate that β_(zyy) is dominant in the shorter chromophores, but β_(zzz) and β_(zyy) are similar for the extended species. In contrast, finite field calculations predict that β_(zyy) is always the major component. Time-dependent density functional theory calculations predict increasing ILCT character for the nominally MLCT transitions and accompanying blue-shifts of the visible absorptions, as the ligand π-systems are extended. Such unusual behavior has also been observed with related 1D complexes (Coe, B. J. et al. J. Am. Chem. Soc. 2004, 126, 3880−3891)
Tunable Nanostructures and Crystal Structures in Titanium Oxide Films
Controllable nanostructures in spin coated titanium oxide (TiO2) films have been achieved by a very simple means, through change of post deposition annealing temperature. Electron beam imaging and reciprocal space analysis revealed as-deposited TiO2films to be characterized by a dominant anatase phase which converts to the rutile form at 600 °C and reverts to the anatase modification at 1,200 °C. The phase changes are also accompanied by changes in the film microstructure: from regular nanoparticles (as-deposited) to nanowires (600 °C) and finally to dendrite like shapes at 1,200 °C. Photoluminescence studies, Raman spectral results, and X-ray diffraction data also furnish evidence in support of the observed solid state phase transformations in TiO2
Loneliness and Social Internet Use: Pathways to Reconnection in a Digital World?
With the rise of online social networking, social relationships are increasingly developed and maintained in a digital domain. Drawing conclusions about the impact of the digital world on loneliness is difficult because there are contradictory findings, and cross-sectional studies dominate the literature, making causation difficult to establish. In this review, we present our theoretical model and propose that there is a bidirectional and dynamic relationship between loneliness and social Internet use. When the Internet is used as a way station on the route to enhancing existing relationships and forging new social connections, it is a useful tool for reducing loneliness. But when social technologies are used to escape the social world and withdraw from the “social pain” of interaction, feelings of loneliness are increased. We propose that loneliness is also a determinant of how people interact with the digital world. Lonely people express a preference for using the Internet for social interaction and are more likely to use the Internet in a way that displaces time spent in offline social activities. This suggests that lonely people may need support with their social Internet use so that they employ it in a way that enhances existing friendships and/or to forge new ones
- …