278 research outputs found
Real-Time Hand Shape Classification
The problem of hand shape classification is challenging since a hand is
characterized by a large number of degrees of freedom. Numerous shape
descriptors have been proposed and applied over the years to estimate and
classify hand poses in reasonable time. In this paper we discuss our parallel
framework for real-time hand shape classification applicable in real-time
applications. We show how the number of gallery images influences the
classification accuracy and execution time of the parallel algorithm. We
present the speedup and efficiency analyses that prove the efficacy of the
parallel implementation. Noteworthy, different methods can be used at each step
of our parallel framework. Here, we combine the shape contexts with the
appearance-based techniques to enhance the robustness of the algorithm and to
increase the classification score. An extensive experimental study proves the
superiority of the proposed approach over existing state-of-the-art methods.Comment: 11 page
Lake Michigan lower food web: Long-term observations and \u3ci\u3eDreissena\u3c/i\u3e impact
Lake Michigan has a long history of non-indigenous introductions that have caused significant ecological change. Here we present a summary of eight papers that document recent changes and the current state of the lower food web of southern Lake Michigan after the establishment of large dreissenid populations. Results are based on long-term data sets collected by federal and academic research and monitoring programs that place recent changes into a historic context. Dramatic and significant changes in the lower food web, such as the loss of the spring diatom bloom, large declines in phytoplankton productivity, and a decline of Mysis populations, were directly or indirectly attributed to the expansion of Dreissena rostriformis bugensis. Total phosphorus concentrations and loadings also have decreased in the last 20 years. Changes in the Lake Michigan ecosystem induced by D. r. bugensis have produced conditions in the offshore pelagic region that are similar to oligotrophic Lake Superior. The future state of the lower food web in southern Lake Michigan is difficult to predict, mainly because population trends of D.r. bugensis in cold, offshore regions are unknown. Hence, monitoring programs designed to collect long-term, consistent data on the lower food web of Lake Michigan are essential
Corrigendum to “Recent changes in primary production and phytoplankton in the offshore region of southeastern Lake Michigan” [J. Great Lakes Res. 36 (Supplement 3) (2010) 20–29]
The authors regret that there is an error on the labels of two figures that were published in the paper referenced above. For Figs. 5b, c, and d and 7b and c the y-axes have the wrong labels.
The following are the correct y-axis labels: Fig. 5b — the y-axis should range from 0 to 5, Fig. 5c — the y-axis should range from 0 to 2, Fig. 5d — the y-axis label should range from 0 to 3, Fig. 7b — the y-axis should range from 0 to 40, and for Fig. 7c — the y-axis should range from 0 to 50
Corrigendum to “Recent changes in primary production and phytoplankton in the offshore region of southeastern Lake Michigan” [J. Great Lakes Res. 36 (Supplement 3) (2010) 20–29]
The authors regret that there is an error on the labels of two figures that were published in the paper referenced above. For Figs. 5b, c, and d and 7b and c the y-axes have the wrong labels.
The following are the correct y-axis labels: Fig. 5b — the y-axis should range from 0 to 5, Fig. 5c — the y-axis should range from 0 to 2, Fig. 5d — the y-axis label should range from 0 to 3, Fig. 7b — the y-axis should range from 0 to 40, and for Fig. 7c — the y-axis should range from 0 to 50
Hydrogen bonding of nitroxide spin labels in membrane proteins
On the basis of experiments at 275 GHz, we reconsider the dependence of the
continuous-wave EPR spectra of nitroxide spin-labeled protein sites in
sensory- and bacteriorhodopsin on the micro-environment. The high magnetic
field provides the resolution necessary to disentangle the effects of hydrogen
bonding and polarity. In the gxx region of the 275 GHz EPR spectrum, bands are
resolved that derive from spin-label populations carrying no, one or two
hydrogen bonds. The gxx value of each population varies hardly from site to
site, significantly less than deduced previously from studies at lower
microwave frequencies. The fractions of the populations vary strongly, which
provides a consistent description of the variation of the average gxx and the
average nitrogen-hyperfine interaction Azz from site to site. These variations
reflect the difference in the proticity of the micro-environment, and
differences in polarity contribute marginally. Concomitant W-band ELDOR-
detected NMR experiments on the corresponding nitroxide in perdeuterated water
resolve population-specific nitrogen-hyperfine bands, which underlies the
interpretation for the proteins
Virtual reality-based parallel coordinates plots enhanced with explainable ai and data-science analytics for decision-making processes
We present a refinement of the Immersive Parallel Coordinates Plots (IPCP) system for Virtual Reality (VR). The evolved system provides data-science analytics built around a well-known method for visualization of multidimensional datasets in VR. The data-science analytics enhancements consist of importance analysis and a number of clustering algorithms including a novel SuMC (Subspace Memory Clustering) solution. These analytical methods were applied to both the main visualizations and supporting cross-dimensional scatter plots. They automate part of the analytical work that in the previous version of IPCP had to be done by an expert. We test the refined system with two sample datasets that represent the optimum solutions of two different multi-objective optimization studies in turbomachinery. The first one describes 54 data items with 29 dimensions (DS1), and the second 166 data items with 39 dimensions (DS2). We include the details of these methods as well as the reasoning behind selecting some methods over others.</jats:p
Influence of Diporeia Density on Diet Composition, Relative Abundance, and Energy Density of Planktivorous Fishes in Southeast Lake Michigan
The benthic amphipod Diporeia spp. is an important prey for many fish in offshore areas of the Great Lakes, but its abundance has been rapidly decreasing. To assess the influence of Diporeia availability on the food habits, relative abundance, and energetics of planktivorous fish, the diet composition, catch per unit effort (CPUE), and energy density of plantkivorous fish in southeast Lake Michigan during 2000–2001 were compared among locations with different Diporeia densities. Diporeia densities at St. Joseph, Michigan, were near 0/m2 over much of the bottom but averaged more than 3,800/m2 at Muskegon and Little Sable Point, Michigan. Consistent with these differences in Diporeia density, fish diet composition, CPUE, and energy density varied spatially. For example, alternative prey types comprised a larger fraction of the diets of bloater Coregonus hoyi, large (>100 mm total length) alewife Alosa pseudoharengus, and slimy sculpin Cottus cognatus at St. Joseph than at Muskegon and Little Sable Point. This pattern was seasonally dependent for alewives and bloaters because Diporeia were eaten mainly in June. Food biomass per stomach was not lower at St. Joseph than elsewhere, suggesting that the spatial variation in diet composition was due to greater consumption of alternative prey by fish at St. Joseph. Although slimy sculpin and bloaters were able to feed on alternative prey, the CPUE of these species at certain depths was considerably lower at St. Joseph than at Muskegon or Little Sable Point, indicating that Diporeia availability may also influence fish abundance and distribution. Finally, a link between Diporeia density and fish energetics was suggested by the comparatively low energy density of deepwater sculpin Myoxocephalus thompsonii and large alewives at St. Joseph, a result that may reflect the low energy content of other prey relative to Diporeia.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141042/1/tafs0588.pd
A discrete firefly algorithm to solve a rich vehicle routing problem modelling a newspaper distribution system with recycling policy
A real-world newspaper distribution problem with recycling policy is tackled in this work. In order to meet all the complex restrictions contained in such a problem, it has been modeled as a rich vehicle routing problem, which can be more specifically considered as an asymmetric and clustered vehicle routing problem with simultaneous pickup and deliveries, variable costs and forbidden paths (AC-VRP-SPDVCFP). This is the first study of such a problem in the literature. For this reason, a benchmark composed by 15 instances has been also proposed. In the design of this benchmark, real geographical positions have been used, located in the province of Bizkaia, Spain. For the proper treatment of this AC-VRP-SPDVCFP, a discrete firefly algorithm (DFA) has been developed. This application is the first application of the firefly algorithm to any rich vehicle routing problem. To prove that the proposed DFA is a promising technique, its performance has been compared with two other well-known techniques: an evolutionary algorithm and an evolutionary simulated annealing. Our results have shown that the DFA has outperformed these two classic meta-heuristics
The Mechanism of Ubiquitination in the Cullin-RING E3 Ligase Machinery: Conformational Control of Substrate Orientation
In cullin-RING E3 ubiquitin ligases, substrate binding proteins, such as VHL-box, SOCS-box or the F-box proteins, recruit substrates for ubiquitination, accurately positioning and orienting the substrates for ubiquitin transfer. Yet, how the E3 machinery precisely positions the substrate is unknown. Here, we simulated nine substrate binding proteins: Skp2, Fbw7, β-TrCP1, Cdc4, Fbs1, TIR1, pVHL, SOCS2, and SOCS4, in the unbound form and bound to Skp1, ASK1 or Elongin C. All nine proteins have two domains: one binds to the substrate; the other to E3 ligase modules Skp1/ASK1/Elongin C. We discovered that in all cases the flexible inter-domain linker serves as a hinge, rotating the substrate binding domain, optimally and accurately positioning it for ubiquitin transfer. We observed a conserved proline in the linker of all nine proteins. In all cases, the prolines pucker substantially and the pucker is associated with the backbone rotation toward the E2/ubiquitin. We further observed that the linker flexibility could be regulated allosterically by binding events associated with either domain. We conclude that the flexible linker in the substrate binding proteins orients the substrate for the ubiquitin transfer. Our findings provide a mechanism for ubiquitination and polyubiquitination, illustrating that these processes are under conformational control
- …