11 research outputs found

    The alternative sigma factor SigB of Corynebacterium glutamicum modulates global gene expression during transition from exponential growth to stationary phase

    Get PDF
    BACKGROUND: Corynebacterium glutamicum is a gram-positive soil bacterium widely used for the industrial production of amino acids. There is great interest in the examination of the molecular mechanism of transcription control. One of these control mechanisms are sigma factors. C. glutamicum ATCC 13032 has seven putative sigma factor-encoding genes, including sigA and sigB. The sigA gene encodes the essential primary sigma factor of C. glutamicum and is responsible for promoter recognition of house-keeping genes. The sigB gene codes for the non-essential sigma factor SigB that has a proposed role in stress reponse. RESULTS: The sigB gene expression was highest at transition between exponential growth and stationary phase, when the amount of sigA mRNA was already decreasing. Genome-wide transcription profiles of the wild-type and the sigB mutant were recorded by comparative DNA microarray hybridizations. The data indicated that the mRNA levels of 111 genes are significantly changed in the sigB-proficient strain during the transition phase, whereas the expression profile of the sigB-deficient strain showed only minor changes (26 genes). The genes that are higher expressed during transition phase only in the sigB-proficient strain mainly belong to the functional categories amino acid metabolism, carbon metabolism, stress defense, membrane processes, and phosphorus metabolism. The transcription start points of six of these genes were determined and the deduced promoter sequences turned out to be indistinguishable from that of the consensus promoter recognized by SigA. Real-time reverse transcription PCR assays revealed that the expression profiles of these genes during growth were similar to that of the sigB gene itself. In the sigB mutant, however, the transcription profiles resembled that of the sigA gene encoding the house-keeping sigma factor. CONCLUSION: During transition phase, the sigB gene showed an enhanced expression, while simultaneously the sigA mRNA decreased in abundance. This might cause a replacement of SigA by SigB at the RNA polymerase core enzyme and in turn results in increased expression of genes relevant for the transition and the stationary phase, either to cope with nutrient limitation or with the accompanying oxidative stress. The increased expression of genes encoding anti-oxidative or protection functions also prepares the cell for upcoming limitations and environmental stresses

    The missing link: Bordetella petrii is endowed with both the metabolic versatility of environmental bacteria and virulence traits of pathogenic Bordetellae

    Get PDF
    Gross R, Guzman CA, Sebaihia M, et al. The missing link: Bordetella petrii is endowed with both the metabolic versatility of environmental bacteria and virulence traits of pathogenic Bordetellae. BMC Genomics. 2008;9(1): 449.Background: Bordetella petrii is the only environmental species hitherto found among the otherwise host-restricted and pathogenic members of the genus Bordetella. Phylogenetically, it connects the pathogenic Bordetellae and environmental bacteria of the genera Achromobacter and Alcaligenes, which are opportunistic pathogens. B. petrii strains have been isolated from very different environmental niches, including river sediment, polluted soil, marine sponges and a grass root. Recently, clinical isolates associated with bone degenerative disease or cystic fibrosis have also been described. Results: In this manuscript we present the results of the analysis of the completely annotated genome sequence of the B. petrii strain DSMZ12804. B. petrii has a mosaic genome of 5,287,950 bp harboring numerous mobile genetic elements, including seven large genomic islands. Four of them are highly related to the clc element of Pseudomonas knackmussii B13, which encodes genes involved in the degradation of aromatics. Though being an environmental isolate, the sequenced B. petrii strain also encodes proteins related to virulence factors of the pathogenic Bordetellae, including the filamentous hemagglutinin, which is a major colonization factor of B. pertussis, and the master virulence regulator BvgAS. However, it lacks all known toxins of the pathogenic Bordetellae. Conclusion: The genomic analysis suggests that B. petrii represents an evolutionary link between free-living environmental bacteria and the host-restricted obligate pathogenic Bordetellae. Its remarkable metabolic versatility may enable B. petrii to thrive in very different ecological niches

    Ökotoxikologische Testung von Pflanzenschutzmitteln

    No full text

    The Extracytoplasmic Function-Type Sigma Factor SigM of Corynebacterium glutamicum ATCC 13032 Is Involved in Transcription of Disulfide Stress-Related Genes▿

    No full text
    The gene for the extracytoplasmic function (ECF) sigma factor SigM was deleted from the chromosome of the gram-positive soil bacterium Corynebacterium glutamicum to elucidate the role of the SigM protein in the regulation of gene expression. Comparative DNA microarray hybridizations of the C. glutamicum wild type and sigM-deficient mutant C. glutamicum DN1 revealed 23 genes with enhanced expression in the sigM-proficient strain, encoding functions in the assembly of iron-sulfur clusters (suf operon), thioredoxin reductase (trxB), thioredoxins (trxC, trxB1), chaperones (groES, groEL, clpB), and proteins involved in the heat shock response (hspR, dnaJ, grpE). Deletion of the sigM gene rendered the C. glutamicum cells more sensitive to heat, cold, and the presence of the thiol oxidant diamide. Transcription of the sigM gene increased under different stress conditions, including heat shock, cold shock, and disulfide stress caused by diamide treatment, suggesting a regulatory role for SigM under thiol-oxidative stress conditions. Stress-responsive promoters were determined upstream of the suf operon and of the trxB, trxC, and trxB1 genes. The deduced SigM consensus promoter is characterized by the −35 hexamer gGGAAT and the −10 hexamer YGTTGR. Transcription of the sigM gene is apparently controlled by the ECF sigma factor SigH, since a sigH mutant was unable to enhance the expression of sigM and the SigM regulon under thiol-oxidative stress conditions. A typical SigH-responsive promoter was mapped upstream of the sigM gene. The ECF sigma factor SigM is apparently part of a regulatory cascade, and its transcription is controlled by SigH under conditions of thiol-oxidative stress

    Morphological changes and proteome response of Corynebacterium glutamicum to a partial depletion of Ftsl

    No full text
    Valbuena N, Letek M, Ramos A, et al. Morphological changes and proteome response of Corynebacterium glutamicum to a partial depletion of Ftsl. MICROBIOLOGY-SGM. 2006;152(8):2491-2503.In Corynebacterium glutamicum, as in many Gram-positive bacteria, the cell division gene ftsl is located at the beginning of the dcw cluster, which comprises cell division- and cell wall-related genes. Transcriptional analysis of the cluster revealed that ftsl is transcribed as part of a polycistronic mRNA, which includes at least mraZ, mraW, ftsL, ftsl and murE, from a promoter that is located upstream of mraZ ftsl appears also to be expressed from a minor promoter that is located in the intergenic ftsL-ftsl region. It is an essential gene in C. glutamicum, and a reduced expression of ftsl leads to the formation of larger and filamentous cells. A translational GFP-Ftsl fusion protein was found to be functional and localized to the mid-cell of a growing bacterium, providing evidence of its role in cell division in C. glutamicum. This study involving proteomic analysis (using 2D SDS-PAGE) of a C. glutamicum strain that has partially depleted levels of Ftsl reveals that at least 20 different proteins were overexpressed in the organism. Eight of these overexpressed proteins, which include DivIVA, were identified by MALDI-TOF Overexpression of DivIVA was confirmed by Western blotting using anti-DivIVA antibodies, and also by fluorescence microscopy analysis of a C. glutamicum RESF1 strain expressing a chromosomal copy of a divIVA-gfp transcriptional fusion. Overexpression of DivIVA was not observed when Ftsl was inhibited by cephalexin treatment or by partial depletion of FtsZ
    corecore