369 research outputs found

    Histomorphometric analysis of minimodeling in the vertebrae in postmenopausal patients treated with anti-osteoporotic agents

    Get PDF
    AbstractMinimodeling is a type of focal bone formation that is characterized by the lack of precedent bone erosion by osteoclasts. Although this form of bone formation has been described for more than a decade, how anti-osteoporotic agents that are currently used in clinical practice affect the kinetics of minimodeling is not fully understood. We performed a bone morphometric analysis using human vertebral specimens collected from postmenopausal patients who underwent spinal surgery. Patients were divided into three groups according to osteoporosis medication; non-treated, Eldecalcitol (ELD, a vitamin D derivative that has recently been approved to treat patients with osteoporosis in Japan)-treated, and bisphosphonate-treated groups. Five to six patients were enrolled in each group. There was a trend toward enhanced minimodeling in ELD-treated patients and suppressed of it in bisphosphonate-treated patients compared with untreated patients. The differences of minimodeling activity between ELD-treated and bisphosphonate-treated patients were statistically significant. The present study suggests that ELD and bisphosphonates have opposite effects on minimodeling from one another, and show that minimodeling also takes place in vertebrae as has been described for the ilium and femoral head in humans

    Branched-chain amino acids-induced cardiac protection against ischemia/reperfusion injury

    Get PDF
    Aims: Amino acids, especially branched chain amino acids (BCAAs), have important regulatory roles in protein synthesis. Recently studies revealed that BCAAs protect against ischemia/reperfusion (I/R) injury. We studied the signaling pathway and mitochondrial function affecting a cardiac preconditioning of BCAAs. Main methods: An in vivo model of I/R injury was tested in control, mTOR+/+, and mTOR+/−. Mice were randomly assigned to receive BCAAs, rapamycin, or BCAAs + rapamycin. Furthermore, isolated cardiomyocytes were subjected to simulated ischemia and cell death was quantified. Biochemical and mitochondrial swelling assays were also performed. Key findings: Mice treated with BCAAs had a significant reduction in infarct size as a percentage of the area at risk compared to controls (34.1 ± 3.9% vs. 44.7 ± 2.6%, P = 0.001), whereas mice treated with the mTOR inhibitor rapamycin were not protected by BCAA administration (42.2 ± 6.5%, vs. control, P = 0.015). This protection was not detected in our hetero knockout mice of mTOR. Western blot analysis revealed no change in AKT signaling whereas activation of mTOR was identified. Furthermore, BCAAs prevented swelling which was reversed by the addition of rapamycin. In myocytes undergoing simulated I/R, BCAA treatment significantly preserved cell viability (71.7 ± 2.7% vs. 34.5 ± 1.6%, respectively, p < 0.0001), whereas rapamycin prevented this BCAA-induced cardioprotective effect (43.5 ± 3.4% vs. BCAA, p < 0.0001). Significance: BCAA treatment exhibits a protective effect in myocardial I/R injury and that mTOR plays an important role in this preconditioning effect.This work was supported by JSPS KAKENHI, Japan [grant number 19K09353]

    Protective role of vascular endothelial growth factor in endotoxin-induced acute lung injury in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vascular endothelial growth factor (VEGF), a substance that stimulates new blood vessel formation, is an important survival factor for endothelial cells. Although overexpressed VEGF in the lung induces pulmonary edema with increased lung vascular permeability, the role of VEGF in the development of acute lung injury remains to be determined.</p> <p>Methods</p> <p>To evaluate the role of VEGF in the pathogenesis of acute lung injury, we first evaluated the effects of exogenous VEGF and VEGF blockade using monoclonal antibody on LPS-induced lung injury in mice. Using the lung specimens, we performed TUNEL staining to detect apoptotic cells and immunostaining to evaluate the expression of apoptosis-associated molecules, including caspase-3, Bax, apoptosis inducing factor (AIF), and cytochrome C. As a parameter of endothelial permeability, we measured the albumin transferred across human pulmonary artery endothelial cell (HPAEC) monolayers cultured on porous filters with various concentrations of VEGF. The effect of VEGF on apoptosis HPAECs was also examined by TUNEL staining and active caspase-3 immunoassay.</p> <p>Results</p> <p>Exogenous VEGF significantly decreased LPS-induced extravascular albumin leakage and edema formation. Treatment with anti-VEGF antibody significantly enhanced lung edema formation and neutrophil emigration after intratracheal LPS administration, whereas extravascular albumin leakage was not significantly changed by VEGF blockade. In lung pathology, pretreatment with VEGF significantly decreased the numbers of TUNEL positive cells and those with positive immunostaining of the pro-apoptotic molecules examined. VEGF attenuated the increases in the permeability of the HPAEC monolayer and the apoptosis of HPAECs induced by TNF-α and LPS. In addition, VEGF significantly reduced the levels of TNF-α- and LPS-induced active caspase-3 in HPAEC lysates.</p> <p>Conclusion</p> <p>These results suggest that VEGF suppresses the apoptosis induced by inflammatory stimuli and functions as a protective factor against acute lung injury.</p

    Safe and efficient method for cryopreservation of human induced pluripotent stem cell-derived neural stem and progenitor cells by a programmed freezer with a magnetic field

    Get PDF
    AbstractStem cells represent a potential cellular resource in the development of regenerative medicine approaches to the treatment of pathologies in which specific cells are degenerated or damaged by genetic abnormality, disease, or injury. Securing sufficient supplies of cells suited to the demands of cell transplantation, however, remains challenging, and the establishment of safe and efficient cell banking procedures is an important goal. Cryopreservation allows the storage of stem cells for prolonged time periods while maintaining them in adequate condition for use in clinical settings. Conventional cryopreservation systems include slow-freezing and vitrification both have advantages and disadvantages in terms of cell viability and/or scalability. In the present study, we developed an advanced slow-freezing technique using a programmed freezer with a magnetic field called Cells Alive System (CAS) and examined its effectiveness on human induced pluripotent stem cell-derived neural stem/progenitor cells (hiPSC-NS/PCs). This system significantly increased cell viability after thawing and had less impact on cellular proliferation and differentiation. We further found that frozen-thawed hiPSC-NS/PCs were comparable with non-frozen ones at the transcriptome level. Given these findings, we suggest that the CAS is useful for hiPSC-NS/PCs banking for clinical uses involving neural disorders and may open new avenues for future regenerative medicine

    The Effects of Maxillomandibular Advancement and Genioglossus Advancement on Sleep Quality

    Get PDF
    Maxillomandibular advancement (MMA) using a standardized surgical procedure consisting of a LeFort I osteotomy and bilateral sagittal split ramus osteotomy and genioglossus advancement (GA) using a genioplasty improve airway volume, oxygen desaturation, and the AHI in patients with OSA. However, there are few reports on changes in sleep quality following MMA and GA. We assessed the effects of MMA and GA on sleep quality by comparing oxygen desaturation, AHI, and sleep architecture before and after surgery. Methods: Eight patients underwent polysomnography (PSG) and CT scan before and after surgery. Conclusions: Our study finds that %TST and %REM were both increased, while %S1 and NA both decreased. Based on these results, it appears that both the quality and quantity of sleep were improved. MMA and GA improve sleep respiratory disturbance and can also improve sleep quality

    Bilateral Upper Arm Granulomas Induced by Leuprorelin Acetate Injection Mimicking Malignant Soft Tissue Tumors: A Case Report

    Get PDF
    Leuprorelin acetate is a common anticancer medication used for prostate cancer treatment. One of the local adverse reactions after leuprorelin injection is the development of reactive granulomas, typically presenting as subcutaneous nodules. In this case report, we describe a 73-year-old patient with prostate cancer who developed unusually large sized intramuscular reactive granulomas, which mimicked malignant soft tissue tumors. The patient, who had been receiving leuprorelin acetate treatment for the past 12 months, noticed painful masses in both upper arms. Based on the findings of magnetic resonance imaging and fluorodeoxyglucose-positron emission tomography/computed tomography, a diagnosis of malignant soft tissue tumor was strongly suggested. However, further investigation through needle biopsy ultimately led us to the final diagnosis of reactive granuloma. The masses spontaneously resolved after discontinuation of leuprorelin injection. While reactive granulomas after leuprorelin injections are not rare, intramuscular cases are relatively uncommon. Despite using imaging studies as a rational initial approach in the diagnostic process, as we did in our case, their results turned out to be indistinguishable from those of malignant soft tissue tumors, thus highlighting the importance of pathological examination in confirming diagnosis, especially when a patient presents with atypical clinical manifestations

    Severe progressive scoliosis due to huge subcutaneous cavernous hemangioma: A case report

    Get PDF
    Cavernous hemangioma consists mainly of congenital vascular malformations present before birth and gradually increasing in size with skeletal growth. A small number of patients with cavernous hemangioma develop scoliosis, and surgical treatment for the scoliosis in such cases has not been reported to date. Here we report a 12-year-old male patient with severe progressive scoliosis due to a huge subcutaneous cavernous hemangioma, who underwent posterior correction and fusion surgery. Upon referral to our department, radiographs revealed a scoliosis of 85° at T6-L1 and a kyphosis of 58° at T4-T10. CT and MR images revealed a huge hemangioma extending from the subcutaneous region to the paraspinal muscles and the retroperitoneal space and invading the spinal canal. Posterior correction and fusion surgery using pedicle screws between T2 and L3 were performed. Massive hemorrhage from the hemangioma occurred during the surgery, with intraoperative blood loss reaching 2800 ml. The scoliosis was corrected to 59°, and the kyphosis to 45° after surgery. Seven hours after surgery, the patient suffered from hypovolemic shock and disseminated intravascular coagulation due to postoperative hemorrhage from the hemangioma. The patient developed sensory and conduction aphasia caused by cerebral hypoxia during the shock on the day of the surgery. At present, two years after the surgery, although the patient has completely recovered from the aphasia. This case illustrates that, in correction surgery for scoliosis due to huge subcutaneous cavernous hemangioma, intraoperative and postoperative intensive care for hemodynamics should be performed, since massive hemorrhage can occur during the postoperative period as well as the intraoperative period
    corecore