505 research outputs found

    Protein-Protein Interaction Analysis Highlights Additional Loci of Interest for Multiple Sclerosis

    Get PDF
    PMCID: PMC3475710This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Učinak kvalitete usluga u jedinicama privatnog smještaja na vjernost turista : SPECIJALISTIČKI RAD

    Get PDF
    Rad ne sadrži sažetak

    The Expression Level of CB1 and CB2 Receptors Determines Their Efficacy at Inducing Apoptosis in Astrocytomas

    Get PDF
    Cannabinoids represent unique compounds for treating tumors, including astrocytomas. Whether CB(1) and CB(2) receptors mediate this therapeutic effect is unclear.We generated astrocytoma subclones that express set levels of CB(1) and CB(2), and found that cannabinoids induce apoptosis only in cells expressing low levels of receptors that couple to ERK1/2. In contrast, cannabinoids do not induce apoptosis in cells expressing high levels of receptors because these now also couple to the prosurvival signal AKT. Remarkably, cannabinoids applied at high concentration induce apoptosis in all subclones independently of CB(1), CB(2) and AKT, but still through a mechanism involving ERK1/2.The high expression level of CB(1) and CB(2) receptors commonly found in malignant astrocytomas precludes the use of cannabinoids as therapeutics, unless AKT is concomitantly inhibited, or cannabinoids are applied at concentrations that bypass CB(1) and CB(2) receptors, yet still activate ERK1/2

    Loss of Sphingosine Kinase 1/S1P Signaling Impairs Cell Growth and Survival of Neurons and Progenitor Cells in the Developing Sensory Ganglia

    Get PDF
    Background: Lysophospholipids such as lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are important signaling molecules that can regulate a wide range of cellular responses. We discovered that Sphingosine kinase 1 (Sphk1), a key enzyme that converts sphingosine to S1P, is expressed in neurons and progenitor cells in nascent trigeminal and dorsal root ganglia during mouse embryogenesis. Methods and Findings: Sphk1 null mouse embryos do not display overt deficits owing to compensation by Sphk2. Thus, we analyzed embryos that are deficient in both Sphk1 and Sphk2 (which essentially eliminates S1P function) in order to investigate the role(s) of Sphk1 during sensory ganglia formation. While animals lacking 1–3 alleles of Sphk1 and Sphk2 had no obvious phenotype, embryos without both genes displayed clear developmental defects. The complete absence of Sphk1 and Sphk2 resulted in trigeminal and dorsal root ganglia with fewer neurons and progenitor cells. The profound loss in cell number could be attributed to a decrease in cell proliferation as well as an increase in apoptosis. Furthermore, Sphk1/ 2 double mutants displayed an overall reduction in other sphingolipids as well as an imbalance of S1P/sphingosine and S1P/ ceramide ratio, thereby favoring cell death and reducing cell growth. Conclusions: Together, these results provide strong in vivo evidence that sphingosine kinase/S1P signaling plays a

    Atomic resolution dynamics of cohesive interactions in phase-separated Nup98 FG domains

    Get PDF
    Cohesive FG domains assemble into a condensed phase forming the selective permeability barrier of nuclear pore complexes. Nanoscopic insight into fundamental cohesive interactions has long been hampered by the sequence heterogeneity of native FG domains. We overcome this challenge by utilizing an engineered perfectly repetitive sequence and a combination of solution and magic angle spinning NMR spectroscopy. We map the dynamics of cohesive interactions in both phase-separated and soluble states at atomic resolution using TROSY for rotational correlation time (TRACT) measurements. We find that FG repeats exhibit nanosecond-range rotational correlation times and remain disordered in both states, although FRAP measurements show slow translation of phase-separated FG domains. NOESY measurements enable the direct detection of contacts involved in cohesive interactions. Finally, increasing salt concentration and temperature enhance phase separation and decrease local mobility of FG repeats. This lower critical solution temperature (LCST) behaviour indicates that cohesive interactions are driven by entropy

    An Optimized Pentaplex PCR for Detecting DNA Mismatch Repair-Deficient Colorectal Cancers

    Get PDF
    Microsatellite instability (MSI) is used to screen colorectal cancers (CRC) for Lynch Syndrome, and to predict outcome and response to treatment. The current technique for measuring MSI requires DNA from normal and neoplastic tissues, and fails to identify tumors with specific DNA mismatch repair (MMR) defects. We tested a panel of five quasi-monomorphic mononucleotide repeat markers amplified in a single multiplex PCR reaction (pentaplex PCR) to detect MSI.We investigated a cohort of 213 CRC patients, comprised of 114 MMR-deficient and 99 MMR-proficient tumors. Immunohistochemical (IHC) analysis evaluated the expression of MLH1, MSH2, PMS2 and MSH6. MSI status was defined by differences in the quasi-monomorphic variation range (QMVR) from a pool of normal DNA samples, and measuring differences in allele lengths in tumor DNA.Amplification of 426 normal alleles allowed optimization of the QMVR at each marker, and eliminated the requirement for matched reference DNA to define MSI in each sample. Using ≥2/5 unstable markers as the criteria for MSI resulted in a sensitivity of 95.6% (95% CI = 90.1–98.1%) and a positive predictive value of 100% (95% CI = 96.6%–100%). Detection of MSH6-deficiency was limited using all techniques. Data analysis with a three-marker panel (BAT26, NR21 and NR27) was comparable in sensitivity (97.4%) and positive predictive value (96.5%) to the five marker panel. Both approaches were superior to the standard approach to measuring MSI.An optimized pentaplex (or triplex) PCR offers a facile, robust, very inexpensive, highly sensitive, and specific assay for the identification of MSI in CRC

    Imported Infections Versus Herd Immunity Gaps; A Didactic Demonstration of Compartment Models Through the Example of a Minor Measles Outbreak in Hungary

    Get PDF
    Introduction: In Hungary, where MMR vaccine coverage is 99%, in 2017, a minor measles epidemic started from imported cases due to two major factors – latent susceptible cohorts among the domestic population and the vicinity of measles-endemic countries. Suspended immunization activities due to the COVID-19 surge are an ominous precursor to a measles resurgence. This epidemiological demonstration is aimed at promoting a better public understanding of epidemiological data. Materials and Methods: Our previous MMR sero-epidemiological measurements (N of total measles cases = 3919, N of mumps cases = 2132, and N of rubella cases = 2132) were analyzed using open-source epidemiological data (ANTSZ) of a small-scale measles epidemic outbreak (2017, Hungary). A simplified SEIR model was applied in the analysis. Results: In case of measles, due to a cluster-specific inadequacy of IgG levels, the cumulative seropositivity ratios (measles = 89.97%) failed to reach the herd immunity threshold (HIT Measles = 92–95%). Despite the fact that 90% of overall vaccination coverage is just slightly below the HIT, unprotected individuals may pose an elevated epidemiological risk. According to the SEIR model, ≥74% of susceptible individuals are expected to get infected. Estimations based on the input data of a local epidemic may suggest an even lower effective coverage rate (80%) in certain clusters of the population. Conclusion: Serological survey-based, historical and model-computed results are in agreement. A practical demonstration of epidemiological events of the past and present may promote a higher awareness of infectious diseases. Because of the high R0 value of measles, continuous large-scale monitoring of humoral immunity levels is important

    Structure and gating behavior of the human integral membrane protein VDAC1 in a lipid bilayer

    Get PDF
    The voltage-dependent anion channel (VDAC), the most abundant protein in the outer mitochondrial membrane, is responsible for the transport of all ions and metabolites into and out of mitochondria. Larger than any of the beta-barrel structures determined to date by magic-angle spinning (MAS) NMR, but smaller than the size limit of cryo-electron microscopy (cryo-EM), VDAC1's 31 kDa size has long been a bottleneck in determining its structure in a near-native lipid bilayer environment. Using a single two-dimensional (2D) crystalline sample of human VDAC1 in lipids, we applied proton-detected fast magic-angle spinning NMR spectroscopy to determine the arrangement of beta strands. Combining these data with long-range restraints from a spin-labeled sample, chemical shift-based secondary structure prediction, and previous MAS NMR and atomic force microscopy (AFM) data, we determined the channel's structure at a 2.2 angstrom root-mean-square deviation (RMSD). The structure, a 19-stranded beta-barrel, with an N-terminal alpha-helix in the pore is in agreement with previous data in detergent, which was questioned due to the potential for the detergent to perturb the protein's functional structure. Using a quintuple mutant implementing the channel's closed state, we found that dynamics are a key element in the protein's gating behavior, as channel closure leads to the destabilization of not only the C-terminal barrel residues but also the alpha 2 helix. We showed that cholesterol, previously shown to reduce the frequency of channel closure, stabilizes the barrel relative to the N-terminal helix. Furthermore, we observed channel closure through steric blockage by a drug shown to selectively bind to the channel, the Bcl2-antisense oligonucleotide G3139
    corecore