24 research outputs found

    2D van der waals heterojunction of organic and inorganic monolayers for high responsivity phototransistors

    Get PDF
    Van der Waals (vdW) heterostructures composing of organic molecules with inorganic 2D crystals open the door to fabricate various promising hybrid devices. Here, a fully ordered organic self‐assembled monolayer (SAM) to construct hybrid organic–inorganic vdW heterojunction phototransistors for highly sensitive light detection is used. The heterojunctions, formed by layering MoS 2 monolayer crystals onto organic [12‐(benzo[b]benzo[4,5]thieno[2,3‐d]thiophen‐2‐yl)dodecyl)]phosphonic acid SAM, are characterized by Raman and photoluminescence spectroscopy as well as Kelvin probe force microscopy. Remarkably, this vdW heterojunction transistor exhibits a superior photoresponsivity of 475 A W −1 and enhanced external quantum efficiency of 1.45 × 10 5 %, as well as an extremely low dark photocurrent in the pA range. This work demonstrates that hybridizing SAM with 2D materials can be a promising strategy for fabricating diversified optoelectronic devices with unique properties

    High‐Performance Monolayer MoS 2 Field‐Effect Transistors on Cyclic Olefin Copolymer‐Passivated SiO 2 Gate Dielectric

    Get PDF
    Abstract Trap states of the semiconductor/gate dielectric interface give rise to a pronounced subthreshold behavior in field‐effect transistors (FETs) diminishing and masking intrinsic properties of 2D materials. To reduce the well‐known detrimental effect of SiO 2 surface traps, this work spin‐coated an ultrathin (≈5 nm) cyclic olefin copolymer (COC) layer onto the oxide and this hydrophobic layer acts as a surface passivator. The chemical resistance of COC allows to fabricate monolayer MoS 2 FETs on SiO 2 by standard cleanroom processes. This way, the interface trap density is lowered and stabilized almost fivefold, to around 5 × 10 11 cm −2 eV −1 , which enables low‐voltage FETs even on 300 nm thick SiO 2 . In addition to this superior electrical performance, the photoresponsivity of the MoS 2 devices on passivated oxide is also enhanced by four orders of magnitude compared to nonpassivated MoS 2 FETs. Under these conditions, negative photoconductivity and a photoresponsivity of 3 × 10 7 A W −1 is observed which is a new highest value for MoS 2 . These findings indicate that the ultrathin COC passivation of the gate dielectric enables to probe exciting properties of the atomically thin 2D semiconductor, rather than interface trap dominated effects.High‐performance monolayer MoS 2 ‐based electronic and optoelectronic devices are fabricated on SiO 2 gate dielectric passivated with cyclic olefin copolymer. The passivation eliminates the interaction with interface trap states which are detrimental for the electronic and optoelectronic performance of the devices. imag

    Spin-valley coupling and spin-relaxation anisotropy in all-CVD Graphene- MoS2 van der Waals heterostructure

    Get PDF
    Two-dimensional (2D) van der Waals (vdW) heterostructures fabricated by combining 2D materials with unique properties into one ultimate unit can offer a plethora of fundamental phenomena and practical applications. Recently, proximity-induced quantum and spintronic effects have been realized in heterostructures of graphene (Gr) with 2D semiconductors and their twisted systems. However, these studies are so far limited to exfoliated flake-based devices, limiting their potential for scalable practical applications. Here, we report spin-valley coupling and spin-relaxation anisotropy in Gr-MoS2 heterostructure devices prepared from scalable chemical vapor-deposited (CVD) 2D materials. Spin precession and dynamics measurements reveal an enhanced spin-orbit coupling strength in the Gr-MoS2 heterostructure in comparison with pristine Gr at room temperature. Consequently, large spin-relaxation anisotropy is observed in the heterostructure, providing a method for spin filtering due to spin-valley coupling. These findings open a scalable platform for all-CVD 2D vdW heterostructures design and their device applications

    Exciton spectroscopy and unidirectional transport in MoSe2-WSe2 lateral heterostructures encapsulated in hexagonal boron nitride

    Get PDF
    Chemical vapor deposition (CVD) allows lateral edge epitaxy of transition metal dichalcogenide heterostructures. Critical for carrier and exciton transport is the material quality and the nature of the lateral heterojunction. Important details of the optical properties were inaccessible in as-grown heterostructure samples due to large inhomogeneous broadening of the optical transitions. Here we perform optical spectroscopy of CVD grown MoSe2_2-WSe2_2 lateral heterostructures, encapsulated in hBN. Photoluminescence (PL), reflectance contrast and Raman spectroscopy reveal optical transition linewidths similar to high quality exfoliated monolayers, while PL imaging experiments uncover the effective excitonic diffusion length of both materials. The typical extent of the covalently bonded MoSe2_2-WSe2_2 heterojunctions is 3 nm measured by scanning transmission electron microscopy (STEM). Tip-enhanced, sub-wavelength optical spectroscopy mapping shows the high quality of the heterojunction which acts as an excitonic diode resulting in unidirectional exciton transfer from WSe2_2 to MoSe2_2

    Chemical Vapor Deposition of High‐Optical‐Quality Large‐Area Monolayer Janus Transition Metal Dichalcogenides

    Get PDF
    One‐pot chemical vapor deposition (CVD) growth of large‐area Janus SeMoS monolayers is reported, with the asymmetric top (Se) and bottom (S) chalcogen atomic planes with respect to the central transition metal (Mo) atoms. The formation of these 2D semiconductor monolayers takes place upon the thermodynamic‐equilibrium‐driven exchange of the bottom Se atoms of the initially grown MoSe₂ single crystals on gold foils with S atoms. The growth process is characterized by complementary experimental techniques including Raman and X‐ray photoelectron spectroscopy, transmission electron microscopy, and the growth mechanisms are rationalized by first principle calculations. The remarkably high optical quality of the synthesized Janus monolayers is demonstrated by optical and magneto‐optical measurements which reveal the strong exciton–phonon coupling and enable an exciton g‐factor of −3.3

    Energy-Level Alignment at Interfaces between Transition-Metal Dichalcogenide Monolayers and Metal Electrodes Studied with Kelvin Probe Force Microscopy

    No full text
    [Image: see text] We studied the energy-level alignment at interfaces between various transition-metal dichalcogenide (TMD) monolayers, MoS(2), MoSe(2), WS(2), and WSe(2), and metal electrodes with different work functions (WFs). TMDs were deposited on SiO(2)/silicon wafers by chemical vapor deposition and transferred to Al and Au substrates, with significantly different WFs to identify the metal–semiconductor junction behavior: oxide-terminated Al (natural oxidation) and Au (UV–ozone oxidation) with a WF difference of 0.8 eV. Kelvin probe force microscopy was employed for this study, based on which electronic band diagrams for each case were determined. We observed the Fermi-level pinning for MoS(2), while WSe(2)/metal junctions behaved according to the Schottky–Mott limit. WS(2) and MoSe(2) exhibited intermediate behavior
    corecore