368 research outputs found

    An investigation of how fungal infection influences drug penetration through onychomycosis patient's nail plates

    Get PDF
    This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)The treatment of onychomycosis remains problematic even though there are several potent antifungal agents available for patient use. The aim of this investigation was to understand if the structural modifications that arise when a patient's nail become infected plates influences the permeation of drugs into the nail following topical application. It was hoped that through improving understanding of the nail barrier in the diseased state, the development of more effective topical treatments for onychomycosis could be facilitated. The permeation of three compounds with differing hydrophobicities; caffeine, terbinafine and amorolfine, (clogD at pH 7.4 of -0.55, 3.72 and 4.49 respectively), was assessed across both healthy and onychomycosis infected, full thickness, human nail plate sections. Transonychial water loss (TOWL) measurements performed on the healthy and diseased nails supported previous observations that the nail behaves like a porous barrier given the lack of correlation between TOWL values with the thicker, diseased nails. The flux of the more hydrophilic caffeine was two-fold greater across diseased in comparison to the healthy nails, whilst the hydrophobic molecules terbinafine and amorolfine showed no statistically significant change in their nail penetration rates. Caffeine flux across the nail was found to correlate with the TOWL measurements, though no correlation existed for the more hydrophobic drugs. This data supported the notion that the nail pores, opened up by the infection, facilitated the passage of hydrophilic molecules, whilst the keratin binding of hydrophobic molecules meant that their transport through the nail plate was unchanged. Therefore, in order to exploit the structural changes induced by nail fungal infection it would be beneficial to develop a small molecular weight, hydrophilic antifungal agent, which exhibits low levels of keratin binding.Peer reviewe

    Thermal history of the string universe

    Full text link
    Thermal history of the string universe based on the Brandenberger and Vafa's scenario is examined. The analysis thereby provides a theoretical foundation of the string universe scenario. Especially the picture of the initial oscillating phase is shown to be natural from the thermodynamical point of view. A new tool is employed to evaluate the multi state density of the string gas. This analysis points out that the well-known functional form of the multi state density is not applicable for the important region T≀THT \leq T_H, and derives a correct form of it.Comment: 39 pages, no figures, use revtex.sty, aps.sty, aps10.sty & preprint.st

    Genome-Wide DNA Methylation Profiling in Early Stage I Lung Adenocarcinoma Reveals Predictive Aberrant Methylation in the Promoter Region of the Long Noncoding RNA PLUT: An Exploratory Study

    Get PDF
    Introduction: Surgical procedure is the treatment of choice in early stage I lung adenocarcinoma. However, a considerable number of patients experience recurrence within the first 2 years after complete resection. Suitable prognostic biomarkers that identify patients at high risk of recurrence (who may probably benefit from adjuvant treatment) are still not available. This study aimed at identifying methylation markers for early recurrence that may become important tools for the development of new treatment modalities. Methods: Genome-wide DNA methylation profiling was performed on 30 stage I lung adenocarcinomas, comparing 14 patients with early metastatic recurrence with 16 patients with a long-term relapse-free survival period using methylated-CpG-immunoprecipitation followed by high-throughput next-generation sequencing. The differentially methylated regions between the two subgroups were validated for their prognostic value in two independent cohorts using the MassCLEAVE assay, a high-resolution quantitative methylation analysis. Results: Unsupervised clustering of patients in the discovery cohort on the basis of differentially methylated regions identified patients with shorter relapse-free survival (hazard ratio: 2.23; 95% confidence interval: 0.66-7.53; p = 0.03). In two validation cohorts, promoter hypermethylation of the long noncoding RNA PLUT was significantly associated with shorter relapse-free survival (hazard ratio: 0.54; 95% confidence interval: 0.31-0.93; p < 0.026) and could be reported as an independent prognostic factor in the multivariate Cox regression analysis. Conclusions: Promoter hypermethylation of the long noncoding RNA PLUT is predictive in patients with early stage I adenocarcinoma at high risk for early recurrence. Further studies are needed to validate its role in carcinogenesis and its use as a biomarker to facilitate patient selection and risk stratification

    Population genomic structure and adaptation in the zoonotic malaria parasite Plasmodium knowlesi

    Get PDF
    Malaria cases due to the zoonotic parasite P. knowlesi are being increasingly reported throughout Southeast Asia and in travelers returning from the region. To test for evidence of signatures of selection or unusual population structure in this parasite, we surveyed genome sequence diversity in 48 clinical isolates recently sampled from Malaysian Borneo and 5 lines maintained in laboratory rhesus macaques after isolation in the 1960s from Peninsular Malaysia and the Philippines. Overall genome-wide nucleotide diversity (π = 6.03 x 10-3) was much higher than has been seen in worldwide samples of either of the major endemic malaria parasite species P. falciparum and P. vivax. A remarkable substructure is revealed within P. knowlesi, consisting of two major sympatric clusters of the clinical isolates, and a third cluster comprising the laboratory isolates. There was deep differentiation between the two clusters of clinical isolates (mean genome-wide FST = 0.21, with 9,293 SNPs having fixed differences of FST = 1.0). This showed marked heterogeneity across the genome, mean FST values of different chromosomes ranging from 0.08 to 0.34, with further significant variation across regions within several chromosomes. Analysis of the largest cluster (Cluster 1, 38 isolates) indicated long-term population growth, with negatively skewed allele frequency distributions (genome-wide average Tajima’s D = -1.35). Against this background there was evidence of balancing selection on particular genes, including the circumsporozoite protein (csp gene had the top value of Tajima’s D = 1.57), and scans of haplotype homozygosity implicate several genomic regions to be under recent positive selection

    (Anti-)deuteron production in pp collisions at 1as=13TeV

    Get PDF
    The study of (anti-)deuteron production in pp collisions has proven to be a powerful tool to investigate the formation mechanism of loosely bound states in high-energy hadronic collisions. In this paper the production of (anti-)deuterons is studied as a function of the charged particle multiplicity in inelastic pp collisions at s=13 TeV using the ALICE experiment. Thanks to the large number of accumulated minimum bias events, it has been possible to measure (anti-)deuteron production in pp collisions up to the same charged particle multiplicity (d Nch/ d \u3b7 3c 26) as measured in p\u2013Pb collisions at similar centre-of-mass energies. Within the uncertainties, the deuteron yield in pp collisions resembles the one in p\u2013Pb interactions, suggesting a common formation mechanism behind the production of light nuclei in hadronic interactions. In this context the measurements are compared with the expectations of coalescence and statistical hadronisation models (SHM)
    • 

    corecore