549 research outputs found
Size effect in the ionization energy of PAH clusters
We report the first experimental measurement of the near-threshold
photo-ionization spectra of polycyclic aromatic hydrocarbon clusters made of
pyrene C16H10 and coronene C24H12, obtained using imaging photoelectron
photoion coincidence spectrometry with a VUV synchrotron beamline. The
experimental results of the ionization energy are confronted to calculated ones
obtained from simulations using dedicated electronic structure treatment for
large ionized molecular clusters. Experiment and theory consistently find a
decrease of the ionization energy with cluster size. The inclusion of
temperature effects in the simulations leads to a lowering of this energy and
to a quantitative agreement with the experiment. In the case of pyrene, both
theory and experiment show a discontinuity in the IE trend for the hexamer
Photoelectron angular distributions from rotationally resolved autoionizing states of N2
The single-photon, photoelectron-photoion coincidence spectrum of N2 has been recorded at high (~1.5 cmâ1 ) resolution in the region between the N2+ X 2ÎŁg+, v+ = 0 and 1 ionization thresholds by using a double-imaging spectrometer and intense vacuum-ultraviolet light from the Synchrotron SOLEIL. This approach provides the relative photoionization cross section, the photoelectron energy distribution, and the photoelectron angular distribution as a function of photon energy. The region of interest contains autoionizing valence states, vibrationally autoionizing Rydberg states converging to vibrationally excited levels of the N2+ X 2ÎŁg+ ground state, and electronically autoionizing states converging to the N2+ A 2Î and B 2ÎŁu+ states. The wavelength resolution is sufficient to resolve rotational structure in the autoionizing states, but the electron energy resolution is insufficient to resolve rotational structure in the photoion spectrum. A simplified approach based on multichannel quantum defect theory is used to predict the photoelectron angular distribution parameters, ÎČ, and the results are in reasonably good agreement with experiment
Photoelectron angular distributions from rotationally resolved autoionizing states of N2
The single-photon, photoelectron-photoion coincidence spectrum of N2 has been recorded at high (~1.5 cmâ1 ) resolution in the region between the N2+ X 2ÎŁg+, v+ = 0 and 1 ionization thresholds by using a double-imaging spectrometer and intense vacuum-ultraviolet light from the Synchrotron SOLEIL. This approach provides the relative photoionization cross section, the photoelectron energy distribution, and the photoelectron angular distribution as a function of photon energy. The region of interest contains autoionizing valence states, vibrationally autoionizing Rydberg states converging to vibrationally excited levels of the N2+ X 2ÎŁg+ ground state, and electronically autoionizing states converging to the N2+ A 2Î and B 2ÎŁu+ states. The wavelength resolution is sufficient to resolve rotational structure in the autoionizing states, but the electron energy resolution is insufficient to resolve rotational structure in the photoion spectrum. A simplified approach based on multichannel quantum defect theory is used to predict the photoelectron angular distribution parameters, ÎČ, and the results are in reasonably good agreement with experiment
High-Resolution Oscillator Strength Measurements of the v\u27 = 0,1 Bands of the B-X, C-X, and E-X Systems in Five Isotopologues of Carbon Monoxide
We report oscillator strengths for six strong vibrational bands between 105.0 and 115.2 nm, associated with transitions from the v = 0 level of the X 1ÎŁ+ ground state to the v = 0 and 1 levels of the B 1ÎŁ+, C 1ÎŁ+, and E 1Î states, in 12C16O, 12C17O, 12C18O, 13C16O, and 13C18O. These measurements extend the development of a comprehensive database of line positions, oscillator strengths, and linewidths of photodissociating transitions for all astrophysically relevant CO isotopologues. The EâX bands, in particular, play central roles in CO photodissociation and fractionationmodels of interstellar clouds and circumstellar disks including the early solar nebula. The resolving powers of the room-temperature measurements, R = 300,000â400,000, allow for the analysis of individual line strengths within bands; the measurements reveal J-dependences in the branch intensities of the C(v = 0,1)âX(0) and E(v = 0,1)âX(0) bands in all isotopologues. Minimal or no isotopologue dependence was found in the f-values of the C(v = 0,1)âX(0) and E(v = 0,1)âX(0) bands at a âŒ5% uncertainty level. Revised dissociation branching ratios for the C(v = 0,1) and E(v = 0,1) levels are computed based on these f-values. The weak isotopologue dependence of the f-values presented here eliminates this mechanism as an explanation for the large 17O enrichments seen in recent laboratory photolysis experiments on CO at wavelengths from 105 to 108 nm
Spectrally-resolved UV photodesorption of CH4 in pure and layered ices
Context. Methane is among the main components of the ice mantles of
insterstellar dust grains, where it is at the start of a rich solid-phase
chemical network. Quantification of the photon-induced desorption yield of
these frozen molecules and understanding of the underlying processes is
necessary to accurately model the observations and the chemical evolution of
various regions of the interstellar medium. Aims. This study aims at
experimentally determining absolute photodesorption yields for the CH4 molecule
as a function of photon energy. The influence of the ice composition is also
investigated. By studying the methane desorption from layered CH4:CO ice,
indirect desorption processes triggered by the excitation of the CO molecules
is monitored and quantified. Methods. Tunable monochromatic VUV light from the
DESIRS beamline of the SOLEIL synchrotron is used in the 7 - 13.6 eV (177 - 91
nm) range to irradiate pure CH4 or layers of CH4 deposited on top of CO ice
samples. The release of species in the gas phase is monitored by quadrupole
mass spectrometry and absolute photodesorption yields of intact CH4 are
deduced. Results. CH4 photodesorbs for photon energies higher than ~9.1 eV
(~136 nm). The photodesorption spectrum follows the absorption spectrum of CH4,
which confirms a desorption mechanism mediated by electronic transitions in the
ice. When it is deposited on top of CO, CH4 desorbs between 8 and 9 eV with a
pattern characteristic of CO absorption, indicating desorption induced by
energy transfer from CO molecules. Conclusions. The photodesorption of CH4 from
the pure ice in various interstellar environments is around 2.0 x 10^-3
molecules per incident photon. Results on CO-induced indirect desorption of CH4
provide useful insights for the generalization of this process to other
molecules co-existing with CO in ice mantles
- âŠ