87 research outputs found

    Electron-positron pairs in hot plasma of accretion column in bright X-ray pulsars

    Get PDF
    The luminosity of X-ray pulsars powered by accretion onto magnetized neutron stars covers a wide range over a few orders of magnitude. The brightest X-ray pulsars recently discovered as pulsating ultraluminous X-ray sources reach accretion luminosity above 1040ergs110^{40}\,{\rm erg\,s^{-1}} which exceeds the Eddington value more than by a factor of ten. Most of the energy is released within small regions in the vicinity of magnetic poles of accreting neutron star - in accretion columns. Because of the extreme energy release within a small volume accretion columns of bright X-ray pulsars are ones of the hottest places in the Universe, where the internal temperature can exceed 100 keV. Under these conditions, the processes of creation and annihilation of electron-positron pairs can be influential but have been largely neglected in theoretical models of accretion columns. In this letter, we investigate properties of a gas of electron-positron pairs under physical conditions typical for accretion columns. We argue that the process of pairs creation can crucially influence both the dynamics of the accretion process and internal structure of accretion column limiting its internal temperature, dropping the local Eddington flux and increasing the gas pressure.Comment: 5 pages, 5 figures, accepted for publication in MNRAS Letter

    Analytical Study on the Sunyaev-Zeldovich Effect for Clusters of Galaxies. II. comparison of covariant formalisms

    Get PDF
    We study a covariant formalism for the Sunyaev-Zeldovich effects developed in the previous papers by the present authors, and derive analytic expressions for the redistribution functions in the Thomson approximation. We also explore another covariant formalism recently developed by Poutanen and Vurm. We show that the two formalisms are mathematically equivalent in the Thomson approximation which is fully valid for the cosmic microwave background photon energies. The present finding will establish a theoretical foundation for the analysis of the Sunyaev-Zeldovich effects for the clusters of galaxies.Comment: Accepted version, 7 pages, 1 figure, accepted by Physical Review D for publicatio

    Compton scattering S-matrix and cross section in strong magnetic field

    Get PDF
    Compton scattering of polarized radiation in a strong magnetic field is considered. The recipe for calculation of the scattering matrix elements, the differential and total cross sections based on quantum electrodynamic (QED) second order perturbation theory is presented for the case of arbitrary initial and final Landau level, electron momentum along the field and photon momentum. Photon polarization and electron spin state are taken into account. The correct dependence of natural Landau level width on the electron spin state is taken into account in general case of arbitrary initial photon momentum for the first time. A number of steps in calculations were simplified analytically making the presented recipe easy-to-use. The redistribution functions over the photon energy, momentum and polarization states are presented and discussed. The paper generalizes already known results and offers a basis for accurate calculation of radiation transfer in strong BB-field, for example, in strongly magnetized neutron stars.Comment: 26 pages, 12 figures, accepted for publication in Phys. Rev.

    Theory of Compton scattering by anisotropic electrons

    Full text link
    Compton scattering plays an important role in various astrophysical objects such as accreting black holes and neutron stars, pulsars, and relativistic jets, clusters of galaxies as well as the early Universe. In most of the calculations it is assumed that the electrons have isotropic angular distribution in some frame. However, there are situations where the anisotropy may be significant due to the bulk motions, or anisotropic cooling by synchrotron radiation, or anisotropic source of seed soft photons. We develop here an analytical theory of Compton scattering by anisotropic distribution of electrons that can simplify significantly the calculations. Assuming that the electron angular distribution can be represented by a second order polynomial over cosine of some angle (dipole and quadrupole anisotropy), we integrate the exact Klein-Nishina cross-section over the angles. Exact analytical and approximate formulae valid for any photon and electron energies are derived for the redistribution functions describing Compton scattering of photons with arbitrary angular distribution by anisotropic electrons. The analytical expressions for the corresponding photon scattering cross-section on such electrons as well as the mean energy of scattered photons, its dispersion and radiation pressure force are also derived. We applied the developed formalism to the accurate calculations of the thermal and kinematic Sunyaev-Zeldovich effects for arbitrary electron distributions.Comment: 23 pages, 12 figures, ApJ Supplement Series, in pres

    On the Origin of Polarization near the Lyman Edge in Quasars

    Get PDF
    Optical/UV radiation from accretion disks in quasars is likely to be partly scattered by a hot plasma enveloping the disk. We investigate whether the scattering may produce the steep rises in polarization observed blueward of the Lyman limit in some quasars. We suggest and assess two models. In the first model, primary disk radiation with a Lyman edge in absorption passes through a static ionized "skin" covering the disk, which has a temperature about 3 keV and a Thomson optical depth about unity. Electron scattering in the skin smears out the edge and produces a steep rise in polarization at lambda < 912 A. In the second model, the scattering occurs in a hot coronal plasma outflowing from the disk with a mildly relativistic velocity. We find that the second model better explains the data. The ability of the models to fit the observed rises in polarization is illustrated with the quasar PG 1630+377.Comment: submitted to ApJ Letter

    Timing properties of ULX pulsars: optically thick envelopes and outflows

    Get PDF
    It has recently been discovered that a fraction of ultra-luminous X-ray sources (ULXs) exhibit X-ray pulsations, and are therefore powered by super-Eddington accretion onto magnetized neutron stars (NSs). For typical ULX mass accretion rates (1019gs1\gtrsim 10^{19}\,{\rm g\,s^{-1}}), the inner parts of the accretion disc are expected to be in the supercritical regime, meaning that some material is lost in a wind launched from the disc surface, while the rest forms an optically thick envelope around the NS as it follows magnetic field lines from the inner disc radius to the magnetic poles of the star. The envelope hides the central object from a distant observer and defines key observational properties of ULX pulsars: their energy spectrum, polarization, and timing features. The optical thickness of the envelope is affected by the mass losses from the disc. We calculate the mass loss rate due to the wind in ULX pulsars, accounting for the NS magnetic field strength and advection processes in the disc. We argue that the detection of strong outflows from ULX pulsars can be considered evidence of a relatively weak dipole component of the NS magnetic field. We estimate the influence of mass losses on the optical thickness of the envelope and analyze how the envelope affects broadband aperiodic variability in ULXs. We show that brightness fluctuations at high Fourier frequencies can be strongly suppressed by multiple scatterings in the envelope and that the strength of suppression is determined by the mass accretion rate and geometrical size of the magnetosphere.Comment: 12 pages, 11 figures, accepted for publication in MNRA

    Sources of Radiation in the Early Universe: The Equation of Radiative Transfer and Optical Distances

    Full text link
    We have derived the radiative-transfer equation for a point source with a specified intensity and spectrum, originating in the early Universe between the epochs of annihilation and recombination, at redshifts z_\s =10^8\div 10^4. The direct radiation of the source is separated from the diffuse radiation it produces. Optical distances from the source for Thomson scattering and bremsstrahlung absorption at the maximum of the thermal background radiation are calculated as a function of the redshift z.The distances grow sharply with decreasing z, approaching asymptotic values, the absorption distance increasing more slowly and reaching their limiting values at lower z. For the adopted z values, the optical parameters of the Universe can be described in a flat model with dusty material and radiation, and radiative transfer can be treated in a grey approximation.Comment: 14 pages, 2 figure

    Relativistic Kinetic Equation for Induced Compton Scattering of Polarized Radiation

    Get PDF
    The relativistic kinetic equations describing time evolution and space dependence of the density matrices of polarized photons and electrons interacting via Compton scattering are deduced from the quantum Liouville equation. The induced scattering and exclusion principle are taken into account. The Bogoliubov method is used in the frame of quantum electrodynamics. The equation for polarized radiation scattered by unpolarized electrons is considered as a particular case and is reformulated in terms of the Stokes parameters. The expressions for the scattering amplitudes and cross-sections are derived simultaneously.Comment: 19 pages; Astronomy & Astrophysics, in pres
    corecore