66 research outputs found

    Intraperitoneal drain placement and outcomes after elective colorectal surgery: international matched, prospective, cohort study

    Get PDF
    Despite current guidelines, intraperitoneal drain placement after elective colorectal surgery remains widespread. Drains were not associated with earlier detection of intraperitoneal collections, but were associated with prolonged hospital stay and increased risk of surgical-site infections.Background Many surgeons routinely place intraperitoneal drains after elective colorectal surgery. However, enhanced recovery after surgery guidelines recommend against their routine use owing to a lack of clear clinical benefit. This study aimed to describe international variation in intraperitoneal drain placement and the safety of this practice. Methods COMPASS (COMPlicAted intra-abdominal collectionS after colorectal Surgery) was a prospective, international, cohort study which enrolled consecutive adults undergoing elective colorectal surgery (February to March 2020). The primary outcome was the rate of intraperitoneal drain placement. Secondary outcomes included: rate and time to diagnosis of postoperative intraperitoneal collections; rate of surgical site infections (SSIs); time to discharge; and 30-day major postoperative complications (Clavien-Dindo grade at least III). After propensity score matching, multivariable logistic regression and Cox proportional hazards regression were used to estimate the independent association of the secondary outcomes with drain placement. Results Overall, 1805 patients from 22 countries were included (798 women, 44.2 per cent; median age 67.0 years). The drain insertion rate was 51.9 per cent (937 patients). After matching, drains were not associated with reduced rates (odds ratio (OR) 1.33, 95 per cent c.i. 0.79 to 2.23; P = 0.287) or earlier detection (hazard ratio (HR) 0.87, 0.33 to 2.31; P = 0.780) of collections. Although not associated with worse major postoperative complications (OR 1.09, 0.68 to 1.75; P = 0.709), drains were associated with delayed hospital discharge (HR 0.58, 0.52 to 0.66; P < 0.001) and an increased risk of SSIs (OR 2.47, 1.50 to 4.05; P < 0.001). Conclusion Intraperitoneal drain placement after elective colorectal surgery is not associated with earlier detection of postoperative collections, but prolongs hospital stay and increases SSI risk

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS

    trans-2-Enoyl-CoA reductase (NADPH)

    No full text

    Evidence for superoxide radical production by a simple flavoprotein: glucose oxidase

    No full text
    Nitroblue tetrazolium was reduced to blue formazan during the oxidation of glucose by glucose oxidase. The rate of blue color formation was dependent on the concentrations of glucose, nitroblue tetrazolium and glucose oxidase. The rate of the reaction was negligible below pH 8.4, but sharply increased with increasing pH. The reduction of nitroblue tetrazolium was inhibited by superoxide dismutase, consistent with the participation of superoxide anion radical in the reaction

    The protective action of thymol against carbon tetrachloride hepatotoxicity in mice

    No full text
    The protective action of thymol (paramethyl-isopropyl-phenol) was investigated against carbon tetrachloride (CCl4)-induced hepatotoxicity in male Swiss albino mice. The CCl4 at a dose of 20 mu l kg(-1) produced damage to liver cells and was followed by the significant increase (P < 0.001) in serum alanine aminotransferase (ALT) activity and hepatic lipid peroxidation after 24 h. The hepatocellular necrosis was further confirmed by histopathological examination of liver section. Oral administration of thymol in a single dose (300 mg kg(-1)) resulted in significant (P < 0.05) amelioration of CCl4-induced hepatotoxicity. Thymol also inhibited lipid peroxidation induced by CCl4 in vivo. The protection offered by thymol was also evident from histopathology photomicrograph. In a separate in vitro assay, thymol inhibited the non-enzymatic lipid peroxidation of normal mice liver homogenate induced by Fe3+-ascorbate. The present study suggests that thymol protects the liver against CCl4-induced toxicity and the protection may be mediated through its ability to inhibit lipid peroxidation. However, other interactions between thymol and CCl4 remains to be elucidated. (C) 1999 Academic Pres

    Protective effect of aminoguanidine, a nitric oxide synthase inhibitor, against carbon tetrachloride induced hepatotoxicity in mice.

    No full text
    The present study was undertaken to evaluate the effect of aminoguanidine (AG) on carbon tetrachloride (CCl4)-induced hepatotoxicity. Treatment of mice with CCl4 (20 microl/kg, i.p.) resulted in damage to centrilobular regions of the liver, increase in serum aminotransferase and rise in lipid peroxides level 24 hours after CCl4 administration. Pretreatment of mice with AG (50 mg/kg, i.p.) 30 minutes before CCl4 was found to protect mice from the CCl4-induced hepatic toxicity. This protection was evident from the significant reduction in serum aminotransferase, inhibition of lipid peroxidation and prevention of CCl4-induced hepatic necrosis revealed by histopathology. Aminoguanidine, a relatively specific inhibitor of inducible nitric oxide synthase, did not inhibit the in vitro lipid peroxidation. Taken together, these data suggest a potential role of nitric oxide as an important mediator of CCl4-induced hepatotoxicity

    BDNF/TrkB signaling regulates HNK-1 carbohydrate expression in regenerating motor nerves and promotes functional recovery after peripheral nerve repair

    No full text
    Functional recovery after peripheral nerve injury is often poor despite high regenerative capacity of peripheral neurons. In search for novel treatments, brief electrical stimulation of the acutely lesioned nerve has recently been identified as a clinically feasible approach increasing precision of axonal regrowth. The effects of this stimulation appear to be mediated by BDNF and its receptor, TrkB, but the down-stream effectors are unknown. A potential candidate is the HNK-1 carbohydrate known to be selectively reexpressed in motor but not sensory nerve branches of the Mouse femoral nerve and to enhance growth of motor but not sensory axons in vitro. Here, we show that short-term low-frequency electrical stimulation (1 h, 20 Hz) of the lesioned and surgically repaired femoral nerve in wild-type mice causes a motor nerve-specific enhancement of HNK-1 expression correlating with previously reported acceleration of muscle reinnervation. Such enhanced HNK-1 expression was not observed after electrical stimulation in heterozygous BDNF or TrkB-deficient mice. Accordingly, the degree of proper reinnervation of the quadriceps muscle, as indicated by retrograde labeling of motoneurons, was reduced in TrkB+/- mice compared to wild-type littermates. Also, recovery of quadriceps muscle function, evaluated by a novel single-frame motion analysis approach, and axonal regrowth into the distal nerve stump, assessed morphologically, were considerably delayed in TrkB+/- mice. These findings indicate that BDNF/TrkB signaling is important for functional recovery after nerve repair and suggest that up-regulation of the HNK-1 glycan is linked to this phenomenon. (C) 2006 Elsevier Inc. All rights reserved

    Effects of thymoquinone on antioxidant enzyme activities, lipid peroxidation and DT-diaphorase in different tissues of mice: a possible mechanism of action.

    No full text
    The present investigation focused, firstly, on the effects of oral administration of thymoquinone (TQ) on antioxidant enzyme activities, lipid peroxidation and DT-diaphorase activity in hepatic, cardiac and kidney tissues of normal mice. Superoxide dismutase (SOD; E.C:1.15.1.1), catalase (CAT; E.C:1.11.1.6), glutathione peroxidase (GSH-Px; E.C:1.11.1.9), glutathione-S-transferase (GST; E.C:2.5.1.18), and DT-diaphorase (E.C:1.6.99.2) enzyme activities in each tissue type were determined. Treatment of mice with the different doses of TQ (25, 50 and 100 mg kg(-1) day(-1) orally) for 5 successive days, produced significant reductions in hepatic SOD, CAT and GSH-Px activities. In addition cardiac SOD activity was markedly inhibited with the higher doses of TQ, (namely 50 and 100 mg kg(-1)). Moreover, TQ (100 mg kg(-1)) significantly reduced hepatic and cardiac lipid peroxidation as compared with the respective control group. Conversely, TQ (50,100 mg kg(-1)) and TQ (100 mg kg(-1)) enhanced cardiac and renal DT-diaphorase activity respectively. However, the selected doses of TQ neither produced any change in GST activity nor influenced reduced glutathione content in all tissues studied. TQ was tested, secondly, as a substrate for hepatic, cardiac and renal DT-diaphorase of normal mice in the presence of NADPH. Kinetic parameters for the reduction of TQ to dihydrothymoquinone (DHTQ) indicated that DT-diaphorase of different tissues can efficiently reduce TQ to DHTQ. K(m) and V(max) values revealed that hepatic DT-diaphorase exhibited the higher values, while the lower values were associated with renal DT-diaphorase. TQ and DHTQ were tested, thirdly, as specific scavengers for superoxide anion (generated biochemically) or as general scavengers for free radicals (generated photochemically). The results revealed that TQ and DHTQ acted not only as superoxide anion scavengers but also as general free radical scavengers. The IC(50) for TQ and DHTQ in biochemical and photochemical assays were in the nanomolar and micromolar range respectively. Our data may explain at least partly the reported beneficial in vivo protective effects of TQ through the combined antioxidant properties of TQ and its metabolite DHTQ

    The protective action of thymol against carbon tetrachloride hepatotoxicity in mice.

    No full text
    The protective action of thymol (paramethyl-isopropyl-phenol) was investigated against carbon tetrachloride (CCl(4))-induced hepatotoxicity in male Swiss albino mice. The CCl(4)at a dose of 20 microl kg(-1)produced damage to liver cells and was followed by the significant increase (P<0.001) in serum alanine aminotransferase (ALT) activity and hepatic lipid peroxidation after 24 h. The hepatocellular necrosis was further confirmed by histopathological examination of liver section. Oral administration of thymol in a single dose (300 mg kg(-1)) resulted in significant (P<0.05) amelioration of CCl(4)-induced hepatotoxicity. Thymol also inhibited lipid peroxidation induced by CCl(4)in vivo. The protection offered by thymol was also evident from histopathology photomicrograph. In a separate in vitro assay, thymol inhibited the non-enzymatic lipid peroxidation of normal mice liver homogenate induced by Fe(3+)-ascorbate. The present study suggests that thymol protects the liver against CCl(4)-induced toxicity and the protection may be mediated through its ability to inhibit lipid peroxidation. However, other interactions between thymol and CCl(4)remains to be elucidated. 1999 Academic Press
    • 

    corecore