92 research outputs found

    Intramolecular vibronic dynamics in molecular solids: C60

    Get PDF
    Vibronic coupling in solid C60 has been investigated with a combination of resonant photoemission spectroscopy (RPES) and resonant inelastic x-ray scattering (RIXS). Excitation as a function of energy within the lowest unoccupied molecular orbital resonance yielded strong oscillations in intensity and dispersion in RPES, and a strong inelastic component in RIXS. Reconciling these two observations establishes that vibronic coupling in this core hole excitation leads to predominantly inelastic scattering and localization of the excited vibrations on the molecule on a femtosecond time scale. The coupling extends throughout the widths of the frontier valence bands.

    Photoelectron Angular Distributions for Two-photon Ionization of Helium by Ultrashort Extreme Ultraviolet Free Electron Laser Pulses

    Full text link
    Phase-shift differences and amplitude ratios of the outgoing ss and dd continuum wave packets generated by two-photon ionization of helium atoms are determined from the photoelectron angular distributions obtained using velocity map imaging. Helium atoms are ionized with ultrashort extreme-ultraviolet free-electron laser pulses with a photon energy of 20.3, 21.3, 23.0, and 24.3 eV, produced by the SPring-8 Compact SASE Source test accelerator. The measured values of the phase-shift differences are distinct from scattering phase-shift differences when the photon energy is tuned to an excited level or Rydberg manifold. The difference stems from the competition between resonant and non-resonant paths in two-photon ionization by ultrashort pulses. Since the competition can be controlled in principle by the pulse shape, the present results illustrate a new way to tailor the continuum wave packet.Comment: 5 pages, 1 table, 3 figure

    Contrasting behavior of covalent and molecular carbon allotropes exposed to extreme ultraviolet and soft x-ray free-electron laser radiation

    Full text link
    All carbon materials, e.g., amorphous carbon (a-C) coatings and C60 fullerene thin films, play an important role in short-wavelength free-electron laser (FEL) research motivated by FEL optics development and prospective nanotechnology applications. Responses of a-C and C60 layers to the extreme ultraviolet (SPring-8 Compact SASE Source in Japan) and soft x-ray (free-electron laser in Hamburg) free-electron laser radiation are investigated by Raman spectroscopy, differential interference contrast, and atomic force microscopy. A remarkable difference in the behavior of covalent (a-C) and molecular (C60) carbonaceous solids is demonstrated under these irradiation conditions. Low thresholds for ablation of a fullerene crystal (estimated to be around 0.15 eV/atom for C60 vs 0.9 eV/atom for a-C in terms of the absorbed dose) are caused by a low cohesive energy of fullerene crystals. An efficient mechanism of the removal of intact C60 molecules from the irradiated crystal due to Coulomb repulsion of fullerene-cage cation radicals formed by the ionizing radiation is revealed by a detailed modeling
    corecore