46 research outputs found

    Reproductive Behaviour Evolves Rapidly When Intralocus Sexual Conflict Is Removed

    Get PDF
    Background Intralocus sexual conflict can inhibit the evolution of each sex towards its own fitness optimum. In a previous study, we confirmed this prediction through the experimental removal of female selection pressures in Drosophila melanogaster, achieved by limiting the expression of all major chromosomes to males. Compared to the control populations (C1-4) where the genomes are exposed to selection in both sexes, the populations with male-limited genomes (ML1-4) showed rapid increases in male fitness, whereas the fitness of females expressing ML-evolved chromosomes decreased [1]. Methodology/Principal Findings Here we examine the behavioural phenotype underlying this sexual antagonism. We show that males expressing the ML genomes have a reduced courtship level but acquire the same number of matings. On the other hand, our data suggest that females expressing the ML genomes had reduced attractiveness, stimulating a lower rate of courtship from males. Moreover, females expressing ML genomes tend to display reduced yeast-feeding behaviour, which is probably linked to the reduction of their fecundity. Conclusion/Significance These results suggest that reproductive behaviour is shaped by opposing selection on males and females, and that loci influencing attractiveness and foraging were polymorphic for alleles with sexually antagonistic expression patterns prior to ML selection. Hence, intralocus sexual conflict appears to play a role in the evolution of a wide range of fitness-related traits and may be a powerful mechanism for the maintenance of genetic variation in fitness

    Addressing statistical biases in nucleotide-derived protein databases for proteogenomic search strategies

    Get PDF
    [Image: see text] Proteogenomics has the potential to advance genome annotation through high quality peptide identifications derived from mass spectrometry experiments, which demonstrate a given gene or isoform is expressed and translated at the protein level. This can advance our understanding of genome function, discovering novel genes and gene structure that have not yet been identified or validated. Because of the high-throughput shotgun nature of most proteomics experiments, it is essential to carefully control for false positives and prevent any potential misannotation. A number of statistical procedures to deal with this are in wide use in proteomics, calculating false discovery rate (FDR) and posterior error probability (PEP) values for groups and individual peptide spectrum matches (PSMs). These methods control for multiple testing and exploit decoy databases to estimate statistical significance. Here, we show that database choice has a major effect on these confidence estimates leading to significant differences in the number of PSMs reported. We note that standard target:decoy approaches using six-frame translations of nucleotide sequences, such as assembled transcriptome data, apparently underestimate the confidence assigned to the PSMs. The source of this error stems from the inflated and unusual nature of the six-frame database, where for every target sequence there exists five “incorrect” targets that are unlikely to code for protein. The attendant FDR and PEP estimates lead to fewer accepted PSMs at fixed thresholds, and we show that this effect is a product of the database and statistical modeling and not the search engine. A variety of approaches to limit database size and remove noncoding target sequences are examined and discussed in terms of the altered statistical estimates generated and PSMs reported. These results are of importance to groups carrying out proteogenomics, aiming to maximize the validation and discovery of gene structure in sequenced genomes, while still controlling for false positives

    Identification of Colorectal Cancer Related Genes with mRMR and Shortest Path in Protein-Protein Interaction Network

    Get PDF
    One of the most important and challenging problems in biomedicine and genomics is how to identify the disease genes. In this study, we developed a computational method to identify colorectal cancer-related genes based on (i) the gene expression profiles, and (ii) the shortest path analysis of functional protein association networks. The former has been used to select differentially expressed genes as disease genes for quite a long time, while the latter has been widely used to study the mechanism of diseases. With the existing protein-protein interaction data from STRING (Search Tool for the Retrieval of Interacting Genes), a weighted functional protein association network was constructed. By means of the mRMR (Maximum Relevance Minimum Redundancy) approach, six genes were identified that can distinguish the colorectal tumors and normal adjacent colonic tissues from their gene expression profiles. Meanwhile, according to the shortest path approach, we further found an additional 35 genes, of which some have been reported to be relevant to colorectal cancer and some are very likely to be relevant to it. Interestingly, the genes we identified from both the gene expression profiles and the functional protein association network have more cancer genes than the genes identified from the gene expression profiles alone. Besides, these genes also had greater functional similarity with the reported colorectal cancer genes than the genes identified from the gene expression profiles alone. All these indicate that our method as presented in this paper is quite promising. The method may become a useful tool, or at least plays a complementary role to the existing method, for identifying colorectal cancer genes. It has not escaped our notice that the method can be applied to identify the genes of other diseases as well

    Data from: Egg viability, mating frequency and male mating ability evolve in populations of Drosophila melanogaster selected for resistance to cold shock

    No full text
    Background: Ability to resist temperature shock is an important component of fitness of insects and other ectotherms. Increased resistance to temperature shock is known to affect life-history traits. Temperature shock is also known to affect reproductive traits such as mating ability and viability of gametes. Therefore selection for increased temperature shock resistance can affect the evolution of reproductive traits. Methods: We selected replicate populations of Drosophila melanogaster for resistance to cold shock. We then investigated the evolution of reproductive behavior along with other components of fitness- larval survivorship, adult mortality, fecundity, egg viability in these populations. Results: We found that larval survivorship, adult mortality and fecundity post cold shock were not significantly different between selected and control populations. However, compared to the control populations, the selected populations laid significantly higher percentage of fertile eggs (egg viability) 24 hours post cold shock. The selected populations had higher mating frequency both with and without cold shock. After being subjected to cold shock, males from the selected populations successfully mated with significantly more non-virgin females and sired significantly more progeny compared to control males. Conclusions: A number of studies have reported the evolution of survivorship in response to selection for temperature shock resistance. Our results clearly indicate that adaptation to cold shock can involve changes in components of reproductive fitness. Our results have important implications for our understanding of how reproductive behavior can evolve in response to thermal stress

    Singh et al data

    No full text
    Contains data from four experiments reported in the paper

    dSir2 in the Adult Fat Body, but Not in Muscles, Regulates Life Span in a Diet-Dependent Manner

    No full text
    Sir2, an evolutionarily conserved NAD+-dependent deacetylase, has been implicated as a key factor in mediating organismal life span. However, recent contradictory findings have brought into question the role of Sir2 and its orthologs in regulating organismal longevity. In this study, we report that Drosophila Sir2 (dSir2) in the adult fat body regulates longevity in a diet-dependent manner. We used inducible Gal4 drivers to knock down and overexpress dSir2 in a tissue-specific manner. A diet-dependent life span phenotype of dSir2 perturbations (both knockdown and overexpression) in the fat body, but not muscles, negates the effects of background genetic mutations. In addition to providing clarity to the field, our study contrasts the ability of dSir2 in two metabolic tissues to affect longevity. We also show that dSir2 knockdown abrogates fat-body dFOXO-dependent life span extension. This report highlights the importance of the interplay between genetic factors and dietary inputs in determining organismal life spans

    Courtship, mating and feeding data for observations during the virgin and non-virgin matings combined (observation points 1 to 7).

    No full text
    <p>See <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0002187#s4" target="_blank">Methods</a> for details.</p

    Number of individuals present at the yeast food source (± s.e.) when ML chromosomes (shaded bars) and C chromosomes (open bars) were expressed in females (left side) and males (right side) in vials containing individuals of both sexes.

    No full text
    <p>Number of individuals present at the yeast food source (± s.e.) when ML chromosomes (shaded bars) and C chromosomes (open bars) were expressed in females (left side) and males (right side) in vials containing individuals of both sexes.</p
    corecore