557 research outputs found

    A photometric study of the hot exoplanet WASP-19b

    Full text link
    Context: When the planet transits its host star, it is possible to measure the planetary radius and (with radial velocity data) the planet mass. For the study of planetary atmospheres, it is essential to obtain transit and occultation measurements at multiple wavelengths. Aims: We aim to characterize the transiting hot Jupiter WASP-19b by deriving accurate and precise planetary parameters from a dedicated observing campaign of transits and occultations. Methods: We have obtained a total of 14 transit lightcurves in the r'-Gunn, IC, z'-Gunn and I+z' filters and 10 occultation lightcurves in z'-Gunn using EulerCam on the Euler-Swiss telescope and TRAPPIST. We have also obtained one lightcurve through the narrow-band NB1190 filter of HAWK-I on the VLT measuring an occultation at 1.19 micron. We have performed a global MCMC analysis of all new data together with some archive data in order to refine the planetary parameters and measure the occultation depths in z'-band and at 1.19 micron. Results: We measure a planetary radius of R_p = 1.376 (+/-0.046) R_j, a planetary mass of M_p = 1.165 (+/-0.068) M_j, and find a very low eccentricity of e = 0.0077 (+/-0.0068), compatible with a circular orbit. We have detected the z'-band occultation at 3 sigma significance and measure it to be dF_z'= 352 (+/-116) ppm, more than a factor of 2 smaller than previously published. The occultation at 1.19 micron is only marginally constrained at dF_1190 = 1711 (+/-745) ppm. Conclusions: We have shown that the detection of occultations in the visible is within reach even for 1m class telescopes if a considerable number of individual events are observed. Our results suggest an oxygen-dominated atmosphere of WASP-19b, making the planet an interesting test case for oxygen-rich planets without temperature inversion.Comment: Published in Astronomy & Astrophysics. 11 pages, 11 figures, 4 table

    Collective synchronization in populations of globally coupled phase oscillators with drifting frequencies

    Full text link
    We generalize the Kuramoto model for coupled phase oscillators by allowing the frequencies to drift in time according to Ornstein-Uhlenbeck dynamics. Such drifting frequencies were recently measured in cellular populations of circadian oscillator and inspired our work. Linear stability analysis of the Fokker-Planck equation for an infinite population is amenable to exact solution and we show that the incoherent state is unstable passed a critical coupling strength K_c(\ga, \sigf), where \ga is the inverse characteristic drifting time and \sigf the asymptotic frequency dispersion. Expectedly KcK_c agrees with the noisy Kuramoto model in the large \ga (Schmolukowski) limit but increases slower as \ga decreases. Asymptotic expansion of the solution for \ga\to 0 shows that the noiseless Kuramoto model with Gaussian frequency distribution is recovered in that limit. Thus varying a single parameter allows to interpolate smoothly between two regimes: one dominated by the frequency dispersion and the other by phase diffusion.Comment: 5 pages, 5 figures, accepted in Phys. Rev.

    Reactive Hall response

    Full text link
    The zero temperature Hall constant R_H, described by reactive (nondissipative) conductivities, is analyzed within linear response theory. It is found that in a certain limit, R_H is directly related to the density dependence of the Drude weight implying a simple picture for the change of sign of charge carriers in the vicinity of a Mott-Hubbard transition. This novel formulation is applied to the calculation of R_H in quasi-one dimensional and ladder prototype interacting electron systems.Comment: 4 pages, 3 Postscript figure

    Replica Symmetry Breaking in Attractor Neural Network Models

    Full text link
    The phenomenon of replica symmetry breaking is investigated for the retrieval phases of Hopfield-type network models. The basic calculation is done for the generalized version of the standard model introduced by Horner [1] and by Perez-Vicente and Amit [2] which can exhibit low mean levels of neural activity. For a mean activity aˉ=1/2\bar a =1/2 the Hopfield model is recovered. In this case, surprisingly enough, we cannot confirm the well known one step replica symmetry breaking (1RSB) result for the storage capacity which was presented by Crisanti, Amit and Gutfreund [3] (\alpha_c^{\hbox{\mf 1RSB}}\simeq 0.144). Rather, we find that 1RSB- and 2RSB-Ans\"atze yield only slightly increased capacities as compared to the replica symmetric value (\alpha_c^{\hbox{\mf 1RSB}}\simeq 0.138\,186 and \alpha_c^{\hbox{\mf 2RSB}}\simeq 0.138\,187 compared to \alpha_c^{\hbox{\mf RS}}\simeq 0.137\,905), significantly smaller also than the value \alpha_c^{\hbox{\mf sim}} = 0.145\pm 0.009 reported from simulation studies. These values still lie within the recently discovered reentrant phase [4]. We conjecture that in the infinite Parisi-scheme the reentrant behaviour disappears as is the case in the SK-spin-glass model (Parisi--Toulouse-hypothesis). The same qualitative results are obtained in the low activity range.Comment: Latex file, 20 pages, 8 Figures available from the authors upon request, HD-TVP-94-

    Transport and conservation laws

    Full text link
    We study the lowest order conservation laws in one-dimensional (1D) integrable quantum many-body models (IQM) as the Heisenberg spin 1/2 chain, the Hubbard and t-J model. We show that the energy current is closely related to the first conservation law in these models and therefore the thermal transport coefficients are anomalous. Using an inequality on the time decay of current correlations we show how the existence of conserved quantities implies a finite charge stiffness (weight of the zero frequency component of the conductivity) and so ideal conductivity at finite temperatures.Comment: 6 pages, Late

    Nuclear Spin Relaxation in Hole Doped Two-Leg Ladders

    Full text link
    The nuclear spin-lattice relaxation rate (1/T11/T_{1}) has been measured in the single crystals of hole doped two-leg ladder compounds Sr14x_{14-x}Cax_{x}Cu24_{24}O41_{41} and in the undoped parent material La6_6Ca8_8Cu24_{24}O41_{41}. Comparison of 1/T11/T_{1} at the Cu and the two distinct oxygen sites revealed that the major spectral weight of low frequency spin fluctuations is located near q(π,π)q \sim (\pi, \pi) for most of the temperature and doping ranges investigated. Remarkable difference in the temperature dependence of 1/T11/T_1 for the two oxygen sites in the heavily doped xx=12 sample revealed reduction of singlet correlations between two legs in place of growing antiferromagnetic correlations along the leg direction with increasing temperature. Such behavior is most likely caused by the dissociation of bound hole pairs.Comment: 4 pages. to appear in J. Phys. Soc. Jpn. Vol. 6

    Investigating the role of auditory and visual sensory inputs for inducing relaxation during virtual reality stimulation

    Get PDF
    Stress is a part of everyday life which can be counteracted by evoking the relaxation response via nature scenes presented using immersive virtual reality (VR). The aim of this study was to determine which sensory aspect of immersive VR intervention is responsible for the greatest relaxation response. We compared four conditions: auditory and visual combined (audiovisual), auditory only, visual only, and no artificial sensory input. Physiological changes in heart rate, respiration rate, and blood pressure were recorded, while participants reported their preferred condition and awareness of people, noise, and light in the real-world. Over the duration of the stimulation, participants had the lowest heart rate during the audiovisual and visual only conditions. They had the steadiest decrease in respiration rate and the lowest blood pressure during the audiovisual condition, compared to the other conditions, indicating the greatest relaxation. Moreover, ratings of awareness indicated that participants reported being less aware of their surroundings (i.e., people, noise, light, real environment) during the audiovisual condition versus the other conditions (p < 0.001), with a preference for audiovisual inputs. Overall, the use of audiovisual VR stimulation is more effective at inducing a relaxation response compared to no artificial sensory inputs, or the independent inputs

    The CORALIE survey for southern extra-solar planets. X. A Hot Jupiter orbiting HD73256

    Full text link
    Recent radial-velocity measurements obtained with the CORALIE spectrograph on the 1.2-m Euler Swiss telescope at La Silla unveil the presence of a new Jovian-mass Hot Jupiter around HD 73256. The 1.85-M_Jup planet moves on an extremely short-period (P=2.5486 d), quasi-circular orbit. The best Keplerian orbital solution is presented together with an unsuccessful photometric planetary-transit search performed with the SAT Danish telescope at La Silla. Over the time span of the observations, the photometric follow-up of the candidate has nevertheless revealed a P=14-d photometric periodicity corresponding to the rotational period of the star. This variation as well as the radial-velocity jitter around the Keplerian solution are shown to be related to the fair activity level known for HD 73256.Comment: 7 pages, 7 figures. Accepted in A&

    Memory and relatedness of transcriptional activity in mammalian cell lineages

    Get PDF
    Phenotypically identical mammalian cells often display considerable variability in transcript levels of individual genes. How transcriptional activity propagates in cell lineages, and how this varies across genes is poorly understood. Here we combine live-cell imaging of short-lived transcriptional reporters in mouse embryonic stem cells with mathematical modelling to quantify the propagation of transcriptional activity over time and across cell generations in phenotypically homogenous cells. In sister cells we find mean transcriptional activity to be strongly correlated and transcriptional dynamics tend to be synchronous; both features control how quickly transcriptional levels in sister cells diverge in a gene-specific manner. Moreover, mean transcriptional activity is transmitted from mother to daughter cells, leading to multi-generational transcriptional memory and causing inter-family heterogeneity in gene expression
    corecore