79 research outputs found

    Electronic and vibrational predissociation in Ari2 photodissociation dynamics

    Get PDF
    A quantum dynamical study of the ArI2 predissociation where both vibrational and electronic processes can take place was performed. A set of 5 coupled diatomics-in-molecules (DIM) electronic potentials was used. Both perpendicular and linear initial ArI2(X) isomers were considered. Only the a′ state had non-negligible effect on photodissociation dynamics for the linear isomer. Decay rates oscillated as a function of the vibrational excitation of I2(B) but the intramolecular vibrational energy was the main source of energy which occurred in vibrational predissociation.This work has been supported by DGICYT @Ministerio de Educacio´n y Ciencia ~MEC!, Spain# under Grant No. PB95-0071, INTAS under Grant No. 97-31573, and the Spanish–French PICASSO Project No. HF1999-0132. A.A.B. also thanks MEC for sabbatical fellowship.Peer Reviewe

    Density Functional Theory of doped superfluid liquid helium and nanodroplets

    Full text link
    During the last decade, density function theory (DFT) in its static and dynamic time dependent forms, has emerged as a powerful tool to describe the structure and dynamics of doped liquid helium and droplets. In this review, we summarize the activity carried out in this field within the DFT framework since the publication of the previous review article on this subject [M. Barranco et al., J. Low Temp. Phys. 142, 1 (2006)]. Furthermore, a comprehensive presentation of the actual implementations of helium DFT is given, which have not been discussed in the individual articles or are scattered in the existing literature. This is an Accepted Manuscript of an article published on August 2, 2017 by Taylor & Francis Group in Int. Rev. Phys. Chem. 36, 621 (2017), available online: http://dx.doi.org/10.1080/0144235X.2017.1351672Comment: 113 pages, 42 figure

    Capture of Xe and Ar atoms by quantized vortices in4He nanodroplets

    Get PDF
    We present a computational study, based on time-dependent Density Functional theory, of the real-time interaction and trapping of Ar and Xe atoms in superfluid4He nanodroplets either pure or hosting quantized vortex lines

    Quantized vortex nucleation in collisions of superfluid nanoscopic helium droplets at zero temperature

    Full text link
    We address the collision of two superfluid 4 He droplets at non-zero initial relative velocities and impact parameters within the framework of liquid 4 He time-dependent density functional theory at zero temperature. In spite of the small size of these droplets (1000 He atoms in the merged droplet) imposed by computational limitations, we have found that quantized vortices may be readily nucleated for reasonable collision parameters. At variance with head-on collisions, where only vortex rings are produced, collisions with non-zero impact parameter produce linear vortices which are nucleated at indentations appearing on the surface of the deformed merged droplet. Whereas for equal-size droplets vortices are produced in pairs, an odd number of vortices can appear when the colliding droplet sizes are different. In all cases vortices coexist with surface capillary waves. The possibility for collisions to be at the origin of vortex nucleation in experiments involving very large droplets is discussed. An additional surprising result is the observation of the drops coalescence even for grazing and distal collisions at relative velocities as high as 80 m/s and 40 m/s, respectively, induced by the long-range Van der Waals attraction between the droplets

    ArI2(X)→Ar+I2(B) photodissociation: Comparison between linear and T-shaped isomers dynamics

    Get PDF
    An attempt was made to compute the spectra and product state distributions on semiempirical and ab initio electronic potential energy surfaces for both linear and T-shaped ArI2(X) isomers. It was shown that whereas the T-shaped isomer dynamics is dominated by resonances, dissociation of the linear isomer involves competition between a fast direct process and slower vibrational predissociation of near-linear resonances.This work has been supported by DGICYT @Ministerio de Educación y Ciencia (MEC), Spain, under Grant No. PB95- 0071, INTAS under Grant No. 97-31573 and the SpanishFrench PICASSO project No. HF1999-0132. One of authors (A.A.B) also thanks MEC for sabbatical fellowship.Peer Reviewe

    A theoretical simulation of the resonant Raman spectroscopy of the H2O⋯Cl2 and H2O⋯Br2 halogen-bonded complexes

    Get PDF
    The resonant Raman spectra of the H2O⋯Cl2 and H2O⋯Br2 halogen-bonded complexes have been studied in the framework of a 2-dimensional model previously used in the simulation of their UV-visible absorption spectra using time-dependent techniques. In addition to the vibrational progression along the dihalogen mode, a progression is observed along the intermolecular mode and its combination with the intramolecular one. The relative intensity of the inter to intramolecular vibrational progressions is about 15% for H2O⋯Cl2 and 33% for H2O⋯Br2. These results make resonant Raman spectra a potential tool for detecting the presence of halogen bonded complexes in condensed phase media such as clathrates and ice.Fil: Franklin Mergarejo, Ricardo. Université Paris Sud; Francia. Centre National de la Recherche Scientifique; Francia. InSTEC; Cuba. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rubayo Soneira, Jesús. InSTEC; CubaFil: Halberstadt, Nadine. Université Paris Sud; Francia. Centre National de la Recherche Scientifique; FranciaFil: Janda, Kenneth C.. University of California at Irvine; Estados UnidosFil: Apkarian, V. Ara. University of California at Irvine; Estados Unido

    Alkali atoms attached to vortex-hosting helium nanodroplets

    Full text link
    Light absorption or fluorescence excitation spectroscopy of alkali atoms attached to 4He droplets is investigated as a possible way for detecting the presence of vortices. To this end, we have calculated the equilibrium configuration and energetics of alkali atoms attached to a 4He1000 droplet hosting a vortex line using 4He density functional theory. We use them to study how the dipole absorption spectrum of the alkali atom is modified when the impurity is attached to a vortex line. Spectra are found to be blue-shifted (higher frequencies) and broadened compared to vortex-free droplets because the dimple in which the alkali atom sits at the intersection of the vortex line and the droplet surface is deeper. This effect is smaller for lighter alkali atoms and all the more so when using a quantum description since, in this case, they sit further away from the droplet surface on average due to their zero-point motion. Spectral modifications due to the presence of a vortex line are minor for np ← ns excitation and therefore insufficient for vortex detection. In the case of higher n′p ← ns or n′s ← ns (n′ > n) excitations, the shifts are larger as the excited state orbital is more extended and therefore more sensitive to changes in the surrounding helium density

    A hybrid classical/quantum approach to cluster fragmentation dynamics: Application to the vibrational predissociation of He2Cl2

    Get PDF
    A new hybrid classical/quantum method is proposed and applied to investigate the vibrational predissociation (VP) dynamics of the He2Cl2 complex. The full dimensionality of the system (assuming zero total angular momentum) is included in the method. The VP process He2Cl2 is dominated by a sequential mechanism of dissociation of the two van der Waals bonds. The hybrid approach describes the first weak bond fragmentation classically, and the second one quantum mechanically. The rotational distribution of the Cl2 fragment is calculated both with the hybrid method and with a fully classical trajectory simulation, and compared with the experimental distribution. The hybrid distribution is found to agree very well with the experimental one, and to involve a substantial improvement with respect to the classical result. © 1998 American Institute of Physics.This work has been supported by the D.G.I.C.Y.T. Grant No. PB95-0071 ~Spain! and the Spanish-French cooperation program PICASSO No. HF1996-0232.Peer Reviewe

    A wave packet Golden Rule treatment of vibrational predissociation

    Get PDF
    The time-dependent wave packet technique is applied to the Golden Rule treatment of vibrational predissociation. The wave packet at time zero is taken as the product of the quasibound wave function and the coupling inducing predissociation. The rate for vibrational predissociation can then be obtained by Fourier transform into the energy domain of the time-dependent wave packet autocorrelation function. The method has been applied to a model triatomic van der Waals molecule. It is shown that when the bound-state components of the wave packet are projected out, the time-dependent version of the Golden Rule approximation provides an alternative efficient technique to treat intramolecular decay. © 1991 American Institute of Physics.Peer Reviewe

    FRAGMENTATION DYNAMICS OF IONIZED RARE-GAS CLUSTERS: NEW ACHIEVEMENTS

    Get PDF
    D. Bonhommeau, N. Halberstadt and U. Buck, Int. Rev. Phys. Chem. 26F. Calvo, D. Bonhommeau and P. Parneix, Phys. Rev. Lett. 99Author Institution: Department of Chemistry, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, MN 55455-0431, USA; LCAR-IRSAMC, Universite Paul Sabatier and CNRS, 118 route de Narbonne, F-31062 Toulouse CEDEX 09, France; Max-Planck Institut fur Dynamik und Selbstoganisation, Busenstr. 10, D-37073 Gottingen, Germany; LCPQ-IRSAMC, Universite Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse, France; Laboratoire de Photophysique Moleculaire, CNRS Bat. 210, Universite Paris-Sud, F-91405 Orsay, FranceThe fragmentation of rare-gas clusters Rgn_n (2n142\le n\le 14 and Rg = Ne, Ar and Kr) upon electron-impact ionization has been studied theoretically and compared to experiments}, 353-390 (2007)}. The dynamics of these ionic clusters has been modeled by means of a trajectory surface hopping method, the Tully's Fewest Switches (TFS) method, in which all the relevant electronic states of the ions and their couplings are taken into account. A very good qualitative agreement is found for all types of clusters, concerning the extensive character of the dissociation and the tendency to form larger fragments when the parent ion size increases. For instance, no trimer fragments are found for clusters smaller than the pentamer. In addition, a very good quantitative agreement is obtained for argon clusters. On the other hand, some discrepancies are found between experiment and theory for krypton clusters: the production of monomers seems underestimated in the simulation. Theoretical results also show that the parent ion dissociation occurs within the first picoseconds, and that most of the dynamics is completed within 10 picoseconds. Despite their success, TFS-like and adiabatic dynamics methods are based on classical mechanics and cannot reach experimental time scales, in the microsecond or millisecond range, whereas large clusters may carry on losing atoms after several nanoseconds. This issue was specifically examined on Arn+_n^+ clusters (n=20 and 30): a new method that combines a TFS dynamics for the internal conversion, an electronic ground state adiabatic dynamics and phase space theory (PST) was designed and allows to reach the millisecond time scale}, 083401 (2007)}
    corecore