60 research outputs found

    In Silico identification of pathogenic strains of Cronobacter from Biochemical data reveals association of inositol fermentation with pathogenicity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Cronobacter</it>, formerly known as <it>Enterobacter sakazakii</it>, is a food-borne pathogen known to cause neonatal meningitis, septicaemia and death. Current diagnostic tests for identification of <it>Cronobacter </it>do not differentiate between species, necessitating time consuming 16S rDNA gene sequencing or multilocus sequence typing (MLST). The organism is ubiquitous, being found in the environment and in a wide range of foods, although there is variation in pathogenicity between <it>Cronobacter </it>isolates and between species. Therefore to be able to differentiate between the pathogenic and non-pathogenic strains is of interest to the food industry and regulators.</p> <p>Results</p> <p>Here we report the use of Expectation Maximization clustering to categorise 98 strains of <it>Cronobacter </it>as pathogenic or non-pathogenic based on biochemical test results from standard diagnostic test kits. Pathogenicity of a strain was postulated on the basis of either pathogenic symptoms associated with strain source or corresponding MLST sequence types, allowing the clusters to be labelled as containing either pathogenic or non-pathogenic strains. The resulting clusters gave good differentiation of strains into pathogenic and non-pathogenic groups, corresponding well to isolate source and MLST sequence type. The results also revealed a potential association between pathogenicity and inositol fermentation. An investigation of the genomes of <it>Cronobacter sakazakii </it>and <it>C. turicensis </it>revealed the gene for inositol monophosphatase is associated with putative virulence factors in pathogenic strains of <it>Cronobacter</it>.</p> <p>Conclusions</p> <p>We demonstrated a computational approach allowing existing diagnostic kits to be used to identify pathogenic strains of <it>Cronobacter</it>. The resulting clusters correlated well with MLST sequence types and revealed new information about the pathogenicity of <it>Cronobacter </it>species.</p

    Complete Ascertainment of Intragenic Copy Number Mutations (CNMs) in the CFTR Gene and its Implications for CNM Formation at Other Autosomal Loci

    Get PDF
    Over the last 20 years since the discovery of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, more than 1,600 different putatively pathological CFTR mutations have been identified. Until now, however, copy number mutations (CNMs) involving the CFTR gene have not been methodically analyzed, resulting almost certainly in the under-ascertainment of CFTR gene duplications compared with deletions. Here, high-resolution array comparative genomic hybridization (averaging one interrogating probe every 95 bp) was used to analyze the entire length of the CFTR gene (189 kb) in 233 cystic fibrosis chromosomes lacking conventional mutations. We succeeded in identifying five duplication CNMs that would otherwise have been refractory to analysis. Based upon findings from this and other studies, we propose that deletion and duplication CNMs in the human autosomal genome are likely to be generated in the proportion of approximately 2-3:1. We further postulate that intragenic gene duplication CNMs in other disease loci may have been routinely underascertained. Finally, our analysis of +/-20 bp flanking each of the 40 CFTR breakpoints characterized at the DNA sequence level provide support for the emerging concept that non-B DNA conformations in combination with specific sequence motifs predispose to both recurring and nonrecurring genomic rearrangements. Hum Mutat 31:421-428, 2010. (C) 2010 Wiley-Liss, Inc

    A meta-analysis of nonsense mutations causing human genetic disease

    No full text
    Nonsense mutations account for ∼11% of all described gene lesions causing human inherited disease and ∼20% of disease-associated single-basepair substitutions affecting gene coding regions. Pathological nonsense mutations resulting in TGA (38.5%), TAG (40.4%), and TAA (21.1%) occur in different proportions to naturally occurring stop codons. Of the 23 different nucleotide substitutions giving rise to nonsense mutations, the most frequent are CGA → TGA (21%; resulting from methylation-mediated deamination) and CAG → TAG (19%). The differing nonsense mutation frequencies are largely explicable in terms of variable nucleotide substitution rates such that it is unnecessary to invoke differential translational termination efficiency or differential codon usage. Some genes are characterized by numerous nonsense mutations but relatively few if any missense mutations (e.g., CHM) whereas other genes exhibit many missense mutations but few if any nonsense mutations (e.g., PSEN1). Genes in the latter category have a tendency to encode proteins characterized by multimer formation. Consistent with the operation of a clinical selection bias, genes exhibiting an excess of nonsense mutations are also likely to display an excess of frameshift mutations. Tumor suppressor (TS) genes exhibit a disproportionate number of nonsense mutations while most mutations in oncogenes are missense. A total of 12% of somatic nonsense mutations in TS genes were found to occur recurrently in the hypermutable CpG dinucleotide. In a comparison of somatic and germline mutational spectra for 17 TS genes, ∼43% of somatic nonsense mutations had counterparts in the germline (rising to 98% for CpG mutations). Finally, the proportion of disease-causing nonsense mutations predicted to elicit nonsense-mediated mRNA decay (NMD) is significantly higher (P=1.56 × 10−9) than among nonobserved (potential) nonsense mutations, implying that nonsense mutations that elicit NMD are more likely to come to clinical attention

    Genotype-phenotype associations in neurofibromatosis type 1 (NF1): an increased risk of tumor complications in patients with NF1 splice-site mutations?

    Get PDF
    Neurofibromatosis type 1 (NF1) is a complex neurocutaneous disorder with an increased susceptibility to develop both benign and malignant tumors but with a wide spectrum of inter and intrafamilial clinical variability. The establishment of genotype-phenotype associations in NF1 is potentially useful for targeted therapeutic intervention but has generally been unsuccessful, apart from small subsets of molecularly defined patients. The objective of this study was to evaluate the clinical phenotype associated with the specific types of NF1 mutation in a retrospectively recorded clinical dataset comprising 149 NF1 mutation-known individuals from unrelated families. Each patient was assessed for ten NF1-related clinical features, including the number of café-au-lait spots, cutaneous and subcutaneous neurofibromas and the presence/absence of intertriginous skin freckling, Lisch nodules, plexiform and spinal neurofibromas, optic gliomas, other neoplasms (in particular CNS gliomas, malignant peripheral nerve sheath tumors (MPNSTs), juvenile myelomonocytic leukemia, rhabdomyosarcoma, phaechromocytoma, gastrointestinal stromal tumors, juvenile xanthogranuloma, and lipoma) and evidence of learning difficulties. Gender and age at examination were also recorded. Patients were subcategorized according to their associated NF1 germ line mutations: frame shift deletions (52), splice-site mutations (23), nonsense mutations (36), missense mutations (32) and other types of mutation (6). A significant association was apparent between possession of a splice-site mutation and the presence of brain gliomas and MPNSTs (p = 0.006). If confirmed, these findings are likely to be clinically important since up to a third of NF1 patients harbor splice-site mutations. A significant influence of gender was also observed on the number of subcutaneous neurofibromas (females, p = 0.009) and preschool learning difficulties (females, p = 0.022)

    Analysis of NF1 somatic mutations in cutaneous neurofibromas from patients with high tumor burden

    No full text
    Neurofibromatosis type 1, (NF1) is a complex, autosomal dominant disorder characterized by benign and malignant tumors which result from NF1 gene mutations. The molecular mechanisms that underlie NF1 tumorigenesis are still poorly understood although inactivation of other modifying loci in conjunction with NF1 mutations is postulated to be involved. These modifying loci may include deficiencies in mismatch repair genes and elements involved in cell cycle regulation (TP53, RB1, and CDKN2A). We have analyzed the somatic mutations in 89 cutaneous neurofibromas derived from three unrelated NF1 patients with high tumor burden, by loss of heterozygosity (LOH) analysis of the NF1, TP53, RB1, and CDKN2A genes, by assessing microsatellite instability (MSI), by direct sequencing of the NF1, TP53, and several mismatch repair (MMR) genes and by multiplex ligation-dependent probe amplification of the NF1 and TP53 genes. The aim was both to assess the possible clonality of these tumors and also to assess the involvement of other potential genetic loci in the development of these neurofibromas. Somatic NF1 mutations were identified in 57 (64%) of neurofibroma samples. Each mutation was distinct demonstrating the independent origin of each tumor. While somatic LOH of the TP53 gene was identified in four tumors, no specific deletions or sequence variations were identified. LOH of markers flanking the RB1 gene was also found in one tumor but no CDKN2A mutations were detected. Although evidence of MSI was seen in 21 tumors, no MMR gene alterations were identified. The identification of LOH involving TP53 and RB1 loci is a novel finding in benign cutaneous neurofibromas possibly demonstrating an alternative underlying molecular mechanism associated with the development of these benign tumors from this cohort of patients

    A meta-analysis of single base-pair substitutions in translational termination codons ('nonstop' mutations) that cause human inherited disease

    No full text
    Abstract 'Nonstop' mutations are single base-pair substitutions that occur within translational termination (stop) codons and which can lead to the continued and inappropriate translation of the mRNA into the 3'-untranslated region. We have performed a meta-analysis of the 119 nonstop mutations (in 87 different genes) known to cause human inherited disease, examining the sequence context of the mutated stop codons and the average distance to the next alternative in-frame stop codon downstream, in comparison with their counterparts from control (non-mutated) gene sequences. A paucity of alternative in-frame stop codons was noted in the immediate vicinity (0-49 nucleotides downstream) of the mutated stop codons as compared with their control counterparts (p = 7.81 × 10-4). This implies that at least some nonstop mutations with alternative stop codons in close proximity will not have come to clinical attention, possibly because they will have given rise to stable mRNAs (not subject to nonstop mRNA decay) that are translatable into proteins of near-normal length and biological function. A significant excess of downstream in-frame stop codons was, however, noted in the range 150-199 nucleotides from the mutated stop codon (p = 8.55 × 10-4). We speculate that recruitment of an alternative stop codon at greater distance from the mutated stop codon may trigger nonstop mRNA decay, thereby decreasing the amount of protein product and yielding a readily discernible clinical phenotype. Confirmation or otherwise of this postulate must await the emergence of a clearer understanding of the mechanism of nonstop mRNA decay in mammalian cells.</p
    corecore