18 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Experimental study of prequalified status of flush end plate connections

    No full text
    Seismic design of steel structures is an essential part of the design process. Egyptian loading code development process continues in a high rate to catch up with emerging new concepts and standards. Steel design codes (ASD and LRFD) are not developing in the same speed, which prevents the full utilization and application of loading code. The above reason leads to the need for evaluating flush end plate connections from prequalification point of view according to international standards. Due to the lack of sufficient experimental data on flush end-plate connections, an experimental program was conducted to investigate this topic. Six flush end-plate samples were designed according to the Egyptian code for steel construction (ECP205 ASD) using different beam and column sections, bolt diameters and grades. A cyclic loading pattern defined by international standards was used in the testing process, and the performance was evaluated accordingly. Evaluation of M–Φ curves showed that in some cases flush end plate connections satisfy the strict requirements for prequalification. However, beam sections having limited depth fail to achieve prequalification criteria for the connections. Reduced web may be used to enhance the connection status and is investigated in one of the samples to evaluate its impact on connection performance and the failure mode. The proposed staggered hole configuration showed a promising performance
    corecore