162 research outputs found

    RNA modulators of complex phenotypes in mammalian cells

    Get PDF
    RNA-mediated gene silencing, in the form of RNA interference (RNAi) or microRNAs (miRNAs) has provided novel tools for gene discovery and validation in mammalian cells. Here, we report on the construction and application of a random small RNA expression library for use in identifying small interfering RNA (siRNA) effectors that can modify complex cellular phenotypes in mammalian cells. The library is based in a retroviral vector and uses convergent promoters to produce unique small complementary RNAs. Using this library, we identify a range of small RNA-encoding gene inserts that overcome resistance to 5-fluorouracil (5-FU)- or tumour necrosis factor alpha (TNF-a)- induced cell death in colorectal cancer cells. We demonstrate the utility of this technology platform by identifying a key RNA effector, in the form of a siRNA, which overcomes cell death induced by the chemotherapeutic 5-FU. The technology described has the potential to identify both functional RNA modulators capable of altering physiological systems and the cellular target genes altered by these modulators

    Atmospheric oxygenation caused by a change in volcanic degassing pressure

    Get PDF
    International audienceThe Precambrian history of our planet is marked by two major events: a pulse of continental crust formation at the end of the Archaean eon and a weak oxygenation of the atmosphere (the Great Oxidation Event) that followed, at 2.45 billion years ago. This oxygenation has been linked to the emergence of oxygenic cyanobacteria1,2 and to changes in the compositions of volcanic gases3,4, but not to the composition of erupting lavas--geochemical constraints indicate that the oxidation state of basalts and their mantle sources has remained constant since 3.5 billion years ago5,6. Here we propose that a decrease in the average pressure of volcanic degassing changed the oxidation state of sulphur in volcanic gases, initiating themodern biogeochemical sulphur cycle and triggering atmospheric oxygenation. Using thermodynamic calculations simulating gas-melt equilibria in erupting magmas, we suggest that mostly submarine Archaean volcanoes produced gases with SO2/H2S,1 and low sulphur content. Emergence of the continents due to a global decrease in sea level and growth of the continental crust in the late Archaean then led to widespread subaerial volcanism, which in turn yielded gases much richer in sulphur and dominated bySO2. Dissolution of sulphur in sea water and the onset of sulphate reduction processes could then oxidize the atmosphere

    Nickel and helium evidence for melt above the core–mantle boundary

    Get PDF
    High ^(3)He/^(4)He ratios in some basalts have generally been interpreted as originating in an incompletely degassed lower-mantle source. This helium source may have been isolated at the core–mantle boundary region since Earth’s accretion. Alternatively, it may have taken part in whole-mantle convection and crust production over the age of the Earth; if so, it is now either a primitive refugium at the core–mantle boundary or is distributed throughout the lower mantle. Here we constrain the problem using lavas from Baffin Island, West Greenland, the Ontong Java Plateau, Isla Gorgona and Fernandina (Galapagos). Olivine phenocryst compositions show that these lavas originated from a peridotite source that was about 20 per cent higher in nickel content than in the modern mid-ocean-ridge basalt source. Where data are available, these lavas also have high ^(3)He/^(4)He. We propose that a less-degassed nickel-rich source formed by core–mantle interaction during the crystallization of a melt-rich layer or basal magma ocean, and that this source continues to be sampled by mantle plumes. The spatial distribution of this source may be constrained by nickel partitioning experiments at the pressures of the core–mantle boundary

    Spreading continents kick-started plate tectonics

    Get PDF
    International audienceStresses acting on cold, thick and negatively buoyant oceanic litho- sphere are thought to be crucial to the initiation of subduction and the operation of plate tectonics, which characterizes the present- day geodynamics of the Earth. Because the Earth’s interior was hotter in the Archaean eon, the oceanic crust may have been thicker, thereby making the oceanic lithosphere more buoyant than at present, and whether subduction and plate tectonics occurred during this time is ambiguous, both in the geological record and in geodynamic models. Here we show that because the oceanic crust was thick and buoyant5, early continents may have produced intra-lithospheric gravitational stresses large enough to drive their gravitational spreading, to initiate subduction at their margins and to trigger episodes of subduction. Our model predicts the co-occurrence of deep to progressively shallower mafic volcanics and arc magmatism within continents in a self-consistent geodynamic framework, explaining the enigmatic multimodal volcanism and tectonic record of Archaean cratons. Moreover, our model predicts a petrological stratification and tectonic structure of the sub-continental lithospheric mantle, two predictions that are consistent with xenolith and seismic studies, respectively, and consistent with the existence of a mid-lithospheric seismic discontinuity. The slow gravitational collapse of early continents could have kick-started transient episodes of plate tectonics until, as the Earth’s interior cooled and oceanic lithosphere became heavier, plate tectonics became self-sustaining

    Morphology and microstructure of chromite crystals in chromitites from the Merensky Reef (Bushveld Complex, South Africa)

    Get PDF
    The Merensky Reef of the Bushveld Complex consists of two chromitite layers separated by coarse-grained melanorite. Microstructural analysis of the chromitite layers using electron backscatter diffraction analysis (EBSD), high-resolution X-ray microtomography and crystal size distribution analyses distinguished two populations of chromite crystals: fine-grained idiomorphic and large silicate inclusion-bearing crystals. The lower chromitite layer contains both populations, whereas the upper contains only fine idiomorphic grains. Most of the inclusion-bearing chromites have characteristic amoeboidal shapes that have been previously explained as products of sintering of pre-existing smaller idiomorphic crystals. Two possible mechanisms have been proposed for sintering of chromite crystals: (1) amalgamation of a cluster of grains with the same original crystallographic orientation; and (2) sintering of randomly orientated crystals followed by annealing into a single grain. The EBSD data show no evidence for clusters of similarly oriented grains among the idiomorphic population, nor for earlier presence of idiomorphic subgrains spatially related to inclusions, and therefore are evidence against both of the proposed sintering mechanisms. Electron backscatter diffraction analysis maps show deformation-related misorientations and curved subgrain boundaries within the large, amoeboidal crystals, and absence of such features in the fine-grained population. Microstructures observed in the lower chromitite layer are interpreted as the result of deformation during compaction of the orthocumulate layers, and constitute evidence for the formation of the amoeboid morphologies at an early stage of consolidation.An alternative model is proposed whereby silicate inclusions are incorporated during maturation and recrystallisation of initially dendritic chromite crystals, formed as a result of supercooling during emplacement of the lower chromite layer against cooler anorthosite during the magma influx that formed the Merensky Reef. The upper chromite layer formed from a subsequent magma influx, and hence lacked a mechanism to form dendritic chromite. This accounts for the difference between the two layers

    Ancestral Inference and the Study of Codon Bias Evolution: Implications for Molecular Evolutionary Analyses of the Drosophila melanogaster Subgroup

    Get PDF
    Reliable inference of ancestral sequences can be critical to identifying both patterns and causes of molecular evolution. Robustness of ancestral inference is often assumed among closely related species, but tests of this assumption have been limited. Here, we examine the performance of inference methods for data simulated under scenarios of codon bias evolution within the Drosophila melanogaster subgroup. Genome sequence data for multiple, closely related species within this subgroup make it an important system for studying molecular evolutionary genetics. The effects of asymmetric and lineage-specific substitution rates (i.e., varying levels of codon usage bias and departures from equilibrium) on the reliability of ancestral codon usage was investigated. Maximum parsimony inference, which has been widely employed in analyses of Drosophila codon bias evolution, was compared to an approach that attempts to account for uncertainty in ancestral inference by weighting ancestral reconstructions by their posterior probabilities. The latter approach employs maximum likelihood estimation of rate and base composition parameters. For equilibrium and most non-equilibrium scenarios that were investigated, the probabilistic method appears to generate reliable ancestral codon bias inferences for molecular evolutionary studies within the D. melanogaster subgroup. These reconstructions are more reliable than parsimony inference, especially when codon usage is strongly skewed. However, inference biases are considerable for both methods under particular departures from stationarity (i.e., when adaptive evolution is prevalent). Reliability of inference can be sensitive to branch lengths, asymmetry in substitution rates, and the locations and nature of lineage-specific processes within a gene tree. Inference reliability, even among closely related species, can be strongly affected by (potentially unknown) patterns of molecular evolution in lineages ancestral to those of interest

    Promotion of protocell self-assembly from mixed amphiphiles at the origin of life

    Get PDF
    Vesicles formed from single-chain amphiphiles (SCAs) such as fatty acids probably played an important role in the origin of life. A major criticism of the hypothesis that life arose in an early ocean hydrothermal environment is that hot temperatures, large pH gradients, high salinity and abundant divalent cations should preclude vesicle formation. However, these arguments are based on model vesicles using 1–3 SCAs, even though Fischer–Tropsch-type synthesis under hydrothermal conditions produces a wide array of fatty acids and 1-alkanols, including abundant C10–C15 compounds. Here, we show that mixtures of these C10–C15 SCAs form vesicles in aqueous solutions between pH ~6.5 and >12 at modern seawater concentrations of NaCl, Mg2+ and Ca2+. Adding C10 isoprenoids improves vesicle stability even further. Vesicles form most readily at temperatures of ~70 °C and require salinity and strongly alkaline conditions to self-assemble. Thus, alkaline hydrothermal conditions not only permit protocell formation at the origin of life but actively favour it

    Heated gas bubbles enrich, crystallize, dry, phosphorylate and encapsulate prebiotic molecules

    Get PDF
    Non-equilibrium conditions must have been crucial for the assembly of the first informational polymers of early life, by supporting their formation and continuous enrichment in a long-lasting environment. Here, we explore how gas bubbles in water subjected to a thermal gradient, a likely scenario within crustal mafic rocks on the early Earth, drive a complex, continuous enrichment of prebiotic molecules. RNA precursors, monomers, active ribozymes, oligonucleotides and lipids are shown to (1) cycle between dry and wet states, enabling the central step of RNA phosphorylation, (2) accumulate at the gas–water interface to drastically increase ribozymatic activity, (3) condense into hydrogels, (4) form pure crystals and (5) encapsulate into protecting vesicle aggregates that subsequently undergo fission. These effects occur within less than 30 min. The findings unite, in one location, the physical conditions that were crucial for the chemical emergence of biopolymers. They suggest that heated microbubbles could have hosted the first cycles of molecular evolution
    corecore