45 research outputs found

    Development and evaluation of real time RT-PCR assays for detection and typing of Bluetongue virus

    Get PDF
    Bluetongue virus is the type species of the genus Orbivirus, family Reoviridae. Bluetongue viruses (BTV) are transmitted between their vertebrate hosts primarily by biting midges (Culicoides spp.) in which they also replicate. Consequently BTV distribution is dependent on the activity, geographic distribution, and seasonal abundance of Culicoides spp. The virus can also be transmitted vertically in vertebrate hosts, and some strains/serotypes can be transmitted horizontally in the absence of insect vectors. The BTV genome is composed of ten linear segments of double-stranded (ds) RNA, numbered in order of decreasing size (Seg-1 to Seg-10). Genome segment 2 (Seg-2) encodes outer-capsid protein VP2, the most variable BTV protein and the primary target for neutralising antibodies. Consequently VP2 (and Seg-2) determine the identity of the twenty seven serotypes and two additional putative BTV serotypes that have been recognised so far. Current BTV vaccines are serotype specific and typing of outbreak strains is required in order to deploy appropriate vaccines. We report development and evaluation of multiple ‘TaqMan’ fluorescence-probe based quantitative real-time type-specific RT-PCR assays targeting Seg-2 of the 27+1 BTV types. The assays were evaluated using orbivirus isolates from the ‘Orbivirus Reference Collection’ (ORC) held at The Pirbright Institute. The assays are BTV-type specific and can be used for rapid, sensitive and reliable detection / identification (typing) of BTV RNA from samples of infected blood, tissues, homogenised Culicoides, or tissue culture supernatants. None of the assays amplified cDNAs from closely related but heterologous orbiviruses, or from uninfected host animals or cell cultures

    Umatilla Virus Genome Sequencing and Phylogenetic Analysis: Identification of Stretch Lagoon Orbivirus as a New Member of the Umatilla virus Species

    Get PDF
    The genus Orbivirus, family Reoviridae, includes 22 species of viruses with genomes composed of ten segments of linear dsRNA that are transmitted between their vertebrate hosts by insects or ticks, or with no identified vectors. Full-genome sequence data are available for representative isolates of the insect borne mammalian orbiviruses (including bluetongue virus), as well as a tick borne avian orbivirus (Great Island virus). However, no sequence data are as yet available for the mosquito borne avian orbiviruses

    Intraperitoneal drain placement and outcomes after elective colorectal surgery: international matched, prospective, cohort study

    Get PDF
    Despite current guidelines, intraperitoneal drain placement after elective colorectal surgery remains widespread. Drains were not associated with earlier detection of intraperitoneal collections, but were associated with prolonged hospital stay and increased risk of surgical-site infections.Background Many surgeons routinely place intraperitoneal drains after elective colorectal surgery. However, enhanced recovery after surgery guidelines recommend against their routine use owing to a lack of clear clinical benefit. This study aimed to describe international variation in intraperitoneal drain placement and the safety of this practice. Methods COMPASS (COMPlicAted intra-abdominal collectionS after colorectal Surgery) was a prospective, international, cohort study which enrolled consecutive adults undergoing elective colorectal surgery (February to March 2020). The primary outcome was the rate of intraperitoneal drain placement. Secondary outcomes included: rate and time to diagnosis of postoperative intraperitoneal collections; rate of surgical site infections (SSIs); time to discharge; and 30-day major postoperative complications (Clavien-Dindo grade at least III). After propensity score matching, multivariable logistic regression and Cox proportional hazards regression were used to estimate the independent association of the secondary outcomes with drain placement. Results Overall, 1805 patients from 22 countries were included (798 women, 44.2 per cent; median age 67.0 years). The drain insertion rate was 51.9 per cent (937 patients). After matching, drains were not associated with reduced rates (odds ratio (OR) 1.33, 95 per cent c.i. 0.79 to 2.23; P = 0.287) or earlier detection (hazard ratio (HR) 0.87, 0.33 to 2.31; P = 0.780) of collections. Although not associated with worse major postoperative complications (OR 1.09, 0.68 to 1.75; P = 0.709), drains were associated with delayed hospital discharge (HR 0.58, 0.52 to 0.66; P < 0.001) and an increased risk of SSIs (OR 2.47, 1.50 to 4.05; P < 0.001). Conclusion Intraperitoneal drain placement after elective colorectal surgery is not associated with earlier detection of postoperative collections, but prolongs hospital stay and increases SSI risk

    Not Available

    No full text
    Not AvailableBluetongue virus (BTV) infects all ruminants, including cattle, goats and camelids, causing bluetongue disease (BT) that is often severe in naïve deer and sheep. Reverse-transcription-loop-mediated-isothermal-amplification (RT-LAMP) assays were developed to detect eastern or western topotype of BTV strains circulating in India. Each assay uses four primers recognizing six distinct sequences of BTV genome-segment 1 (Seg-1). The eastern (e)RT-LAMP and western (w)RT-LAMP assay detected BTV RNA in all positive isolates that were tested (n=52, including Indian BTV-1, -2, -3, -5, -9, -10, -16, -21 -23, and -24 strains) with high specificity and efficiency. The analytical sensitivity of the RT-LAMP assays is comparable to real-time RT-PCR, but higher than conventional RT-PCR. The accelerated eRT-LAMP and wRT-LAMP assays generated detectable levels of amplified DNA, down to 0.216 fg of BTV RNA template or 108 fg of BTV RNA template within 60-90min respectively. The assays gave negative results with RNA from foot-and-mouth-disease virus (FMDV), peste des petits ruminants virus (PPRV), or DNA from Capripox viruses and Orf virus (n=10), all of which can cause clinical signs similar to BT. Both RT-LAMP assays did not show any cross-reaction among themselves. The assays are rapid, easy to perform, could be adapted as a 'penside' test making them suitable for 'front-line' diagnosis, helping to identify and contain field outbreaks of BTV.Not Availabl

    Not Available

    No full text
    Not AvailableIntroduction: Bluetongue disease is an economically important viral disease of livestock caused by bluetongue virus (BTV) having multiple serotypes. It belongs to the genus Orbivirus of family Reoviridae and subfamily Sedoreovirinae. The genome of BTV is 10 segmented dsRNA that codes for 7 structural and 4 nonstructural proteins, of which VP2 was reported to be serotype-specific and a major antigenic determinant. Objective: It is important to know the circulating serotypes in a particular geographical location for effective control of the disease. The present study unravels the molecular evolution of the circulating BTV serotypes during 2014–2018 in Telangana and Andhra Pradesh states of India. Methods: Multiple sequence alignment with available BTV serotypes in GenBank and phylogenetic analysis were performed for the partial VP2 sequences of major circulating BTV serotypes during the study period. Results: The multiple sequence alignment of circulating serotypes with respective reference isolates revealed variations in antigenic VP2. The phylogenetic analysis revealed that the major circulating serotypes were grouped into eastern topotypes (BTV-1, BTV-2, BTV-4, and BTV-16) and Western topotypes (BTV-5, BTV-12, and BTV-24). Conclusion: Our study strengthens the need for development of an effective vaccine, which can induce the immune response for a range of serotypes within and in between topotypes.Not Availabl

    Not Available

    No full text
    Not AvailableBluetongue virus (BTV) is neurotropic in nature, especially in ruminant fetuses and in-utero infection results in abortion and congenital brain malformations. The aim of the present study was to compare the neuropathogenicity of major Indian BTV serotypes 1, 2, 10, 16 and 23 by gross and histopathological lesions and virus distribution in experimentally infected neonatal BALB/c mice. Each BTV serotype (20 μl of inoculum containing 1 × 105 tissue culture infectious dose [TCID]50/ml of virus) was inoculated intracerebrally into 3-day-old mice, while a control group was inoculated with mock-infected cell culture medium. Infection with BTV serotypes 1, 2 and 23 led to 65-70% mortality at 7-9 days post infection (dpi) and caused severe necrotizing encephalitis with neurodegenerative changes in neurons, swelling and proliferation of vascular endothelial cells in the cerebral cortex, cerebellum, midbrain and brainstem. In contrast, infection with BTV serotypes 10 and 16 led to 25-30% mortality at 9-11 dpi and caused mild neuropathological lesions. BTV antigen was detected by immunohistochemistry, direct fluorescence antibody technique and confocal microscopy in the cytoplasm of neuronal cells of the hippocampus, grey matter of the cerebral cortex and vascular endothelial cells in the midbrain and brainstem of BTV-1, -2, -10, -16 and -23 infected groups from 3 to 20 dpi. BTV nucleic acid was detected in the infected brain tissues from as early as 24 h up to 20 dpi by VP7 gene segment-based one-step reverse transcriptase polymerase chain reaction. This study of the relative neurovirulence of BTV serotypes is likely to help design suitable vaccination and control strategies for the disease.Not Availabl

    Not Available

    No full text
    Not AvailableBluetongue virus (BTV) is neurotropic in nature, especially in ruminant fetuses and in-utero infection results in abortion and congenital brain malformations. The aim of the present study was to compare the neuropathogenicity of major Indian BTV serotypes 1, 2, 10, 16 and 23 by gross and histopathological lesions and virus distribution in experimentally infected neonatal BALB/c mice. Each BTV serotype (20 μl of inoculum containing 1 × 105 tissue culture infectious dose [TCID]50/ml of virus) was inoculated intracerebrally into 3-day-old mice, while a control group was inoculated with mock-infected cell culture medium. Infection with BTV serotypes 1, 2 and 23 led to 65-70% mortality at 7-9 days post infection (dpi) and caused severe necrotizing encephalitis with neurodegenerative changes in neurons, swelling and proliferation of vascular endothelial cells in the cerebral cortex, cerebellum, midbrain and brainstem. In contrast, infection with BTV serotypes 10 and 16 led to 25-30% mortality at 9-11 dpi and caused mild neuropathological lesions. BTV antigen was detected by immunohistochemistry, direct fluorescence antibody technique and confocal microscopy in the cytoplasm of neuronal cells of the hippocampus, grey matter of the cerebral cortex and vascular endothelial cells in the midbrain and brainstem of BTV-1, -2, -10, -16 and -23 infected groups from 3 to 20 dpi. BTV nucleic acid was detected in the infected brain tissues from as early as 24 h up to 20 dpi by VP7 gene segment-based one-step reverse transcriptase polymerase chain reaction. This study of the relative neurovirulence of BTV serotypes is likely to help design suitable vaccination and control strategies for the disease.Not Availabl
    corecore