58 research outputs found
Soliton pair creation in classical wave scattering
We study classical production of soliton-antisoliton pairs from colliding
wave packets in (1+1)-dimensional scalar field model. Wave packets represent
multiparticle states in quantum theory; we characterize them by energy E and
particle number N. Sampling stochastically over the forms of wave packets, we
find the entire region in (E,N) plane which corresponds to classical creation
of soliton pairs. Particle number is parametrically large within this region
meaning that the probability of soliton-antisoliton pair production in
few-particle collisions is exponentially suppressed.Comment: 16 pages, 8 figures, journal version; misprint correcte
Electrical detection of magnetic skyrmions by non-collinear magnetoresistance
Magnetic skyrmions are localised non-collinear spin textures with high
potential for future spintronic applications. Skyrmion phases have been
discovered in a number of materials and a focus of current research is the
preparation, detection, and manipulation of individual skyrmions for an
implementation in devices. Local experimental characterization of skyrmions has
been performed by, e.g., Lorentz microscopy or atomic-scale tunnel
magnetoresistance measurements using spin-polarised scanning tunneling
microscopy. Here, we report on a drastic change of the differential tunnel
conductance for magnetic skyrmions arising from their non-collinearity: mixing
between the spin channels locally alters the electronic structure, making a
skyrmion electronically distinct from its ferromagnetic environment. We propose
this non-collinear magnetoresistance (NCMR) as a reliable all-electrical
detection scheme for skyrmions with an easy implementation into device
architectures
Room temperature chiral magnetic skyrmion in ultrathin magnetic nanostructures
Magnetic skyrmions are chiral spin structures with a whirling configuration.
Their topological properties, nanometer size and the fact that they can be
moved by small current densities have opened a new paradigm for the
manipulation of magnetisation at the nanoscale. To date, chiral skyrmion
structures have been experimentally demonstrated only in bulk materials and in
epitaxial ultrathin films and under external magnetic field or at low
temperature. Here, we report on the observation of stable skyrmions in
sputtered ultrathin Pt/Co/MgO nanostructures, at room temperature and zero
applied magnetic field. We use high lateral resolution X-ray magnetic circular
dichroism microscopy to image their chiral N\'eel internal structure which we
explain as due to the large strength of the Dzyaloshinskii-Moriya interaction
as revealed by spin wave spectroscopy measurements. Our results are
substantiated by micromagnetic simulations and numerical models, which allow
the identification of the physical mechanisms governing the size and stability
of the skyrmions.Comment: Submitted version. Extended version to appear in Nature
Nanotechnolog
Spin-orbit torque-driven skyrmion dynamics revealed by time-resolved X-ray microscopy
Magnetic skyrmions are topologically protected spin textures with attractive properties suitable for high-density and low-power spintronic device applications. Much effort has been dedicated to understanding the dynamical behaviours of the magnetic skyrmions. However, experimental observation of the ultrafast dynamics of this chiral magnetic texture in real space, which is the hallmark of its quasiparticle nature, has so far remained elusive. Here, we report nanosecond-dynamics of a 100nm-diameter magnetic skyrmion during a current pulse application, using a time-resolved pump-probe soft X-ray imaging technique. We demonstrate that distinct dynamic excitation states of magnetic skyrmions, triggered by current-induced spin-orbit torques, can be reliably tuned by changing the magnitude of spin-orbit torques. Our findings show that the dynamics of magnetic skyrmions can be controlled by the spin-orbit torque on the nanosecond time scale, which points to exciting opportunities for ultrafast and novel skyrmionic applications in the future.clos
The study of atmospheric ice-nucleating particles via microfluidically generated droplets
Ice-nucleating particles (INPs) play a significant role in the climate and hydrological cycle by triggering ice formation in supercooled clouds, thereby causing precipitation and affecting cloud lifetimes and their radiative properties. However, despite their importance, INP often comprise only 1 in 10³–10⁶ ambient particles, making it difficult to ascertain and predict their type, source, and concentration. The typical techniques for quantifying INP concentrations tend to be highly labour-intensive, suffer from poor time resolution, or are limited in sensitivity to low concentrations. Here, we present the application of microfluidic devices to the study of atmospheric INPs via the simple and rapid production of monodisperse droplets and their subsequent freezing on a cold stage. This device offers the potential for the testing of INP concentrations in aqueous samples with high sensitivity and high counting statistics. Various INPs were tested for validation of the platform, including mineral dust and biological species, with results compared to literature values. We also describe a methodology for sampling atmospheric aerosol in a manner that minimises sampling biases and which is compatible with the microfluidic device. We present results for INP concentrations in air sampled during two field campaigns: (1) from a rural location in the UK and (2) during the UK’s annual Bonfire Night festival. These initial results will provide a route for deployment of the microfluidic platform for the study and quantification of INPs in upcoming field campaigns around the globe, while providing a benchmark for future lab-on-a-chip-based INP studies
- …