112 research outputs found

    Long-Duration Gamma-Ray Burst Host Galaxies in Emission and Absorption

    Get PDF
    The galaxy population hosting long-duration GRBs provides a means to constrain the progenitor and an opportunity to use these violent explosions to characterize the nature of the high-redshift universe. Studies of GRB host galaxies in emission reveal a population of star-forming galaxies with great diversity, spanning a wide range of masses, metallicities, and redshifts. However, as a population GRB hosts are significantly less massive and poorer in metals than the hosts of other core-collapse transients, suggesting that GRB production is only efficient at metallicities significantly below Solar. GRBs may also prefer compact galaxies, and dense and/or central regions of galaxies, more than other types of core-collapse explosion. Meanwhile, studies of hosts in absorption against the luminous GRB optical afterglow provide a unique means of unveiling properties of the ISM in even the faintest and most distant galaxies; these observations are helping to constrain the chemical evolution of galaxies and the properties of interstellar dust out to very high redshifts. New ground- and space-based instrumentation, and the accumulation of larger and more carefully-selected samples, are continually enhancing our view of the GRB host population. © 2016, Springer Science+Business Media Dordrecht

    Astrophysics: Most distant cosmic blast seen

    Full text link
    The most distant -ray burst yet sighted is the earliest astronomical object ever observed in cosmic history. This ancient beacon offers a glimpse of the little-known cosmic dark ages.Comment: Published in Nature News & View

    GRB jet structure and the jet break

    Get PDF
    We investigate the shape of the jet break in within-beam gamma-ray burst (GRB) optical afterglows for various lateral jet structure profiles. We consider cases with and without lateral spreading and a range of inclinations within the jet core half-opening angle, θc. We fit model and observed afterglow light curves with a smoothly-broken power-law function with a free-parameter κ that describes the sharpness of the break. We find that the jet break is sharper (κ is greater) when lateral spreading is included than in the absence of lateral spreading. For profiles with a sharp-edged core, the sharpness parameter has a broad range of 0.1 ≲ κ ≲ 4.6, whereas profiles with a smooth-edged core have a narrower range of 0.1 ≲ κ ≲ 2.2 when models both with and without lateral spreading are included. For sharp-edged jets, the jet break sharpness depends strongly on the inclination of the system within θc, whereas for smooth-edged jets, κ is more strongly dependent on the size of θc. Using a sample of 20 GRBs, we find 9 candidate smooth-edged jet structures and 8 candidate sharp-edged jet structures, while the remaining 3 are consistent with either. The shape of the jet break, as measured by the sharpness parameter κ, can be used as an initial check for the presence of lateral structure in within-beam GRBs where the afterglow is well-sampled at and around the jet-break time

    The host galaxies and explosion sites of long-duration gamma-ray bursts: Hubble Space Telescope near-infrared imaging

    Get PDF
    We present the results of a Hubble Space Telescope WFC3/F160WSnapshot survey of the host galaxies of 39 long-duration gamma-ray bursts (LGRBs) at z < 3. We have non-detections of hosts at the locations of four bursts. Sufficient accuracy to astrometrically align optical afterglowimages and determine the location of the LGRB within its hostwas possible for 31/35 detected hosts. In agreement with other work, we find the luminosity distribution of LGRB hosts is significantly fainter than that of a star formation rate-weighted field galaxy sample over the same redshift range, indicating LGRBs are not unbiasedly tracing the star formation rate. Morphologically, the sample of LGRB hosts is dominated by spiral-like or irregular galaxies. We find evidence for evolution of the population of LGRB hosts towards lower luminosity, higher concentrated hosts at lower redshifts. Their half-light radii are consistent with other LGRB host samples where measurements were made on rest-frame UV observations. In agreement with recent work, we find their 80 per cent enclosed flux radii distribution to be more extended than previously thought, making them intermediate between core-collapse supernova (CCSN) and superluminous supernova (SLSN) hosts. The galactocentric projectedoffset distribution confirms LGRBs as centrally concentrated, much more so than CCSNe and similar to SLSNe. LGRBs are strongly biased towards the brighter regions in their host light distributions, regardless of their offset. We find a correlation between the luminosity of the LGRB explosion site and the intrinsic column density, NH, towards the burst. © 2017 The Authors

    Late-Time HST UV and optical observations of AT 2018cow: extracting a cow from its background

    Get PDF
    The bright, blue, rapidly evolving AT 2018cow is a well-studied peculiar extragalactic transient. Despite an abundance of multiwavelength data, there still is no consensus on the nature of the event. We present our analysis of three epochs of Hubble Space Telescope (HST) observations spanning the period from 713 to 1474 d post-burst, paying particular attention to uncertainties of the transient photometry introduced by the complex background in which AT 2018cow resides. Photometric measurements show evident fading in the UV and more subtle but significant fading in the optical. During the last HST observation, the transient's optical/UV colours were still bluer than those of the substantial population of compact, young, star-forming regions in the host of AT 2018cow, suggesting some continued transient contribution to the light. However, a compact source underlying the transient would substantially modify the resulting spectral energy distribution, depending on its contribution in the various bands. In particular, in the optical filters, the complex, diffuse background poses a problem for precise photometry. An underlying cluster is expected for a supernova occurring within a young stellar environment or a tidal-disruption event (TDE) within a dense older one. While many recent works have focused on the supernova interpretation, we note the substantial similarity in UV light-curve morphology between AT 2018cow and several tidal disruption events around supermassive black holes. Assuming AT 2018cow arises from a TDE-like event, we fit the late-Time emission with a disc model and find MBH = 103.2 ± 0.8 M. Further observations are necessary to determine the late-Time evolution of the transient and its immediate environment

    Distances from the Correlation between Galaxy Luminosities and Rotation Rates

    Get PDF
    A large luminosity--linewidth template sample is now available, improved absorption corrections have been derived, and there are a statistically significant number of galaxies with well determined distances to supply the zero point. A revised estimate of the Hubble Constant is H_0=77 +-4 km/s/Mpc where the error is the 95% probability statistical error. Systematic uncertainties are potentially twice as large.Comment: 21 pages, 9 figures. Invited chapter for the book `Post-Hipparcos Cosmic Candles', Eds. F. Caputo and A. Heck (Kluwer Academic Publishers, Dordrecht

    HUBBLE SPACE TELESCOPE OBSERVATIONS OF THE AFTERGLOW, SUPERNOVA, AND HOST GALAXY ASSOCIATED WITH THE EXTREMELY BRIGHT GRB 130427A

    Get PDF
    We present Hubble Space Telescope (HST) observations of the exceptionally bright and luminous Swift gamma-ray burst (GRB), GRB 130427A. At z = 0.34, this burst affords an excellent opportunity to study the supernova (SN) and host galaxy associated with an intrinsically extremely luminous burst (Eiso > 1054 erg):more luminous than any previous GRB with a spectroscopically associated SN.We use the combination of the image quality, UV capability, and invariant point-spread function of HST to provide the best possible separation of the afterglow, host, and SN contributions to the observed light~17 rest-frame days after the burst, utilizing a host subtraction spectrum obtained one year later. Advanced Camera for Surveys grism observations show that the associated SN, SN 2013cq, has an overall spectral shape and luminosity similar to SN 1998bw (with a photospheric velocity, vph ~ 15,000 km s-1). The positions of the bluer features are better matched by the higher velocity SN 2010bh (vph ~ 30,000 km s-1), but this SN is significantly fainter and fails to reproduce the overall spectral shape, perhaps indicative of velocity structure in the ejecta. We find that the burst originated ~4 kpc from the nucleus of a moderately star forming (1M_ yr-1), possibly interacting disk galaxy. The absolute magnitude, physical size, and morphology of this galaxy, as well as the location of the GRB within it, are also strikingly similar to those of GRB 980425/SN 1998bw. The similarity of the SNe and environment from both the most luminous and least luminous GRBs suggests that broadly similar progenitor stars can create GRBs across six orders of magnitude in isotropic energy

    Exploring compact binary merger host galaxies and environments with zELDA

    Get PDF
    Compact binaries such as double neutron stars or a neutron star paired with a black hole, are strong sources of gravitational waves during coalescence and also the likely progenitors of various electromagnetic phenomena, notably short-duration gamma-ray bursts (SGRBs), and kilonovae. In this work, we generate populations of synthetic binaries and place them in galaxies from the large-scale hydrodynamical galaxy evolution simulation, eagle. With our zELDA code, binaries are seeded in proportion to star formation rate, and we follow their evolution to merger using both the bpass and cosmic binary stellar evolution codes. We track their dynamical evolution within their host galaxy potential, to estimate the galactocentric distance at the time of the merger. Finally, we apply observational selection criteria to allow comparison of this model population with the legacy sample of SGRBs. We find a reasonable agreement with the redshift distribution (peaking at 0.5 26)

    The contribution of microlensing surveys to the distance scale

    Full text link
    In the early nineties several teams started large scale systematic surveys of the Magellanic Clouds and the Galactic Bulge to search for microlensing effects. As a by product, these groups have created enormous time-series databases of photometric measurements of stars with a temporal sampling duration and accuracy which are unprecedented. They provide the opportunity to test the accuracy of primary distance indicators, such as Cepheids, RRLyrae stars, the detached eclipsing binaries, or the luminosity of the red clump. We will review the contribution of the microlensing surveys to the understanding of the physics of the primary distance indicators, recent differential studies and direct distance determinations to the Magellanic Clouds and the Galactic Bulge.Comment: Invited review article to appear in: `Post-Hipparcos Cosmic Candles', A. Heck & F. Caputo (Eds), Kluwer Academic Publ., Dordrecht, in press. 21 pages; uses Kluwer's crckapb.sty LaTeX style file, enclose

    Chandra and Hubble Space Telescope observations of dark gamma-ray bursts and their host galaxies

    Get PDF
    We present a study of 21 dark gamma-ray burst (GRB) host galaxies, predominantly using X-ray afterglows obtained with the Chandra X-Ray Observatory (CXO) to precisely locate the burst in deep Hubble Space Telescope (HST) imaging of the burst region. The host galaxies are well-detected in F160W in all but one case and in F606W imaging in 60 per cent of cases. We measure magnitudes and perform a morphological analysis of each galaxy. The asymmetry, concentration, and ellipticity of the dark burst hosts are compared against the host galaxies of optically bright GRBs. In agreement with other studies, we find that dark GRB hosts are redder and more luminous than the bulk of the GRB host population. The distribution of projected spatial offsets for dark GRBs from their host galaxy centroids is comparable to that of optically bright bursts. The dark GRB hosts are physically larger, more massive and redder, but are morphologically similar to the hosts of bright GRBs in terms of concentration and asymmetry. Our analysis constrains the fraction of high redshift (z > 5) GRBs in the sample to 14 per cent, implying an upper limit for the whole long-GRB population of ≤4.4 per cent. If dust is the primary cause of afterglow darkening amongst dark GRBs, the measured extinction may require a clumpy dust component in order to explain the observed offset and ellipticity distributions
    • …
    corecore