49 research outputs found

    Illuminating Gravitational Waves: A Concordant Picture of Photons from a Neutron Star Merger

    Get PDF
    Merging neutron stars offer an exquisite laboratory for simultaneously studying strong-field gravity and matter in extreme environments. We establish the physical association of an electromagnetic counterpart (EM170817) to gravitational waves (GW170817) detected from merging neutron stars. By synthesizing a panchromatic dataset, we demonstrate that merging neutron stars are a long-sought production site forging heavy elements by r-process nucleosynthesis. The weak gamma-rays seen in EM170817 are dissimilar to classical short gamma-ray bursts with ultra-relativistic jets. Instead, we suggest that breakout of a wide-angle, mildly-relativistic cocoon engulfing the jet elegantly explains the low-luminosity gamma-rays, the high-luminosity ultraviolet-optical-infrared and the delayed radio/x-ray emission. We posit that all merging neutron stars may lead to a wide-angle cocoon breakout; sometimes accompanied by a successful jet and sometimes a choked jet

    Ultraviolet and X-ray Light-Curves of Novae Observed by the Neil Gehrels Swift Observatory

    Get PDF
    With rapid response capabilities, and a daily planning of its observing schedule, the Neil Gehrels Swift Observatory is ideal for monitoring transient and variable sources. Here we present a sample of the 12 novae with the most detailed ultraviolet (UV) follow-up by Swift—the first uniform analysis of such UV light-curves. The fading of these specific light-curves can be modelled as power-law decays (plotting magnitude against log time), showing that the same physical processes dominate the UV emission for extended time intervals in individual objects. After the end of the nuclear burning interval, the X-ray emission drops significantly, fading by a factor of around 10–100. The UV changes, however, are of a lower amplitude, declining by 1–2 mag over the same time period. The UV light-curves typically show a break from flatter to steeper around the time at which the X-ray light-curve starts a steady decline from maximum, ∼0.7–1.3 T (Formula presented.). Considering populations of both classical and recurrent novae, and those with main sequence or giant companions, we do not find any strong differences in the UV light-curves or their evolution, although the long-period recurrent novae are more luminous than the majority of the classical novae

    Multiwavelength observations of nova SMCN 2016-10a — one of the brightest novae ever observed

    Get PDF
    We report on multiwavelength observations of nova SMCN 2016-10a. The present observational set is one of the most comprehensive for any nova in the Small Magellanic Cloud, including: low, medium, and high resolution optical spectroscopy and spectropolarimetry from SALT, FLOYDS, and SOAR; long-term OGLE V- and I- bands photometry dating back to six years before eruption; SMARTS optical and near-IR photometry from ∼ 11 days until over 280 days post-eruption; Swift satellite X-ray and ultraviolet observations from ∼ 6 days until 319 days post-eruption. The progenitor system contains a bright disk and a main sequence or a sub-giant secondary. The nova is very fast with t2 ≃ 4.0 ± 1.0 d and t3 ≃ 7.8 ± 2.0 d in the V-band. If the nova is in the SMC, at a distance of ∼ 61 ± 10 kpc, we derive MV, max ≃ −10.5 ± 0.5, making it the brightest nova ever discovered in the SMC and one of the brightest on record. At day 5 post-eruption the spectral lines show a He/N spectroscopic class and a FWHM of ∼ 3500 km s−1 indicating moderately high ejection velocities. The nova entered the nebular phase ∼ 20 days post-eruption, predicting the imminent super-soft source turn-on in the X-rays, which started ∼ 28 days post-eruption. The super-soft source properties indicate a white dwarf mass between 1.2 M⊙ and 1.3 M⊙ in good agreement with the optical conclusions

    Swift UVOT grism observations of nearby Type Ia supernovae – II. Probing the progenitor metallicity of SNe Ia with ultraviolet spectra

    Get PDF
    Ultraviolet (UV) observations of Type Ia supernovae (SNe Ia) are crucial for constraining the properties of their progenitor systems. Theoretical studies predicted that the UV spectra, which probe the outermost layers of an SN, should be sensitive to the metal content of the progenitor. Using the largest SN Ia UV (λ < 2900 Å) spectroscopic sample obtained from Neil Gehrels Swift Observatory, we investigate the dependence of UV spectra on metallicity. For the first time, our results reveal a correlation (∼2σ) between SN Ia UV flux and hostgalaxy metallicities, with SNe in more metal-rich galaxies (which are likely to have higher progenitor metallicities) having lower UV flux level. We find that this metallicity effect is only significant at short wavelengths (λ 2700 Å), which agrees well with the theoretical predictions. We produce UV spectral templates for SNe Ia at peak brightness. With our sample, we could disentangle the effect of light-curve shape and metallicity on the UV spectra. We also examine the correlation between the UV spectra and SN luminosities as parametrized by Hubble residuals. However, we do not see a significant trend with Hubble residuals. This is probably due to the large uncertainties in SN distances, as the majority of our sample members are extremely nearby (redshift z 0.01). Future work with SNe discovered in the Hubble flow will be necessary to constrain a potential metallicity bias on SN Ia cosmology

    On the Polarized Absorption Lines in Gamma-Ray Burst Optical Afterglows

    Get PDF
    Spectropolarimetric measurements of gamma-ray burst (GRB) optical afterglows contain polarization information for both continuum and absorption lines. Based on the Zeeman effect, an absorption line in a strong magnetic field is polarized and split into a triplet. In this paper, we solve the polarization radiative transfer equations of the absorption lines, and obtain the degree of linear polarization of the absorption lines as a function of the optical depth. In order to effectively measure the degree of linear polarization for the absorption lines, a magnetic field strength of at least 103 G is required. The metal elements that produce the polarized absorption lines should be sufficiently abundant and have large oscillation strengths or Einstein absorption coefficients. We encourage both polarization measurements and high-dispersion observations of the absorption lines in order to detect the triplet structure in early GRB optical afterglows

    The 2019 eruption of recurrent nova V3890 Sgr: Observations by Swift, NICER, and SMARTS

    Get PDF
    V3890 Sgr is a recurrent nova that has been seen in outburst three times so far, with the most recent eruption occurring on 2019 August 27 ut. This latest outburst was followed in detail by the Neil Gehrels Swift Observatory, from less than a day after the eruption until the nova entered the Sun observing constraint, with a small number of additional observations after the constraint ended. The X-ray light curve shows initial hard shock emission, followed by an early start of the supersoft source phase around day 8.5, with the soft emission ceasing by day 26. Together with the peak blackbody temperature of the supersoft spectrum being ∼100 eV, these timings suggest the white dwarf mass to be high, ∼ 1.3, M·. The UV photometric light curve decays monotonically, with the decay rate changing a number of times, approximately simultaneously with variations in the X-ray emission. The UV grism spectra show both line and continuum emission, with emission lines of N, C, Mg, and O being notable. These UV spectra are best dereddened using a Small Magellanic Cloud extinction law. Optical spectra from SMARTS show evidence of interaction between the nova ejecta and wind from the donor star, as well as the extended atmosphere of the red giant being flash-ionized by the supersoft X-ray photons. Data from NICER reveal a transient 83 s quasi-periodic oscillation, with a modulation amplitude of 5 per cent, adding to the sample of novae that show such short variabilities during their supersoft phase

    The calibration of read-out-streak photometry in the XMM-Newton Optical Monitor and the construction of a bright-source catalogue

    Get PDF
    The dynamic range of the XMM-Newton Optical Monitor (XMM-OM) is limited at the bright end by coincidence loss, the superposition of multiple photons in the individual frames recorded from its micro-channel-plate (MCP) intensified charge-coupled device (CCD) detector. One way to overcome this limitation is to use photons that arrive during the frame transfer of the CCD, forming vertical read-out streaks for bright sources. We calibrate these read-out streaks for photometry of bright sources observed with XMM-OM. The bright source limit for read-out streak photometry is set by the recharge time of the MCPs. For XMM-OM we find that the MCP recharge time is 0.55 ms. We determine that the effective bright limits for read-out streak photometry with XMM-OM are approximately 1.5 magnitudes brighter than the bright source limits for normal aperture photometry in full-frame images. This translates into bright-source limits in Vega magnitudes of UVW2=7.1, UVM2=8.0, UVW1=9.4, U=10.5, B=11.5, V=10.2 and White=12.5 for data taken early in the mission. The limits brighten by up to 0.2 magnitudes, depending on filter, over the course of the mission as the detector ages. The method is demonstrated by deriving UVW1 photometry for the symbiotic nova RR Telescopii, and the new photometry is used to constrain the e-folding time of its decaying UV emission. Using the read-out streak method, we obtain photometry for 50 per cent of the missing UV source measurements in version 2.1 of the XMM-Newton Serendipitous UV Source Survey (XMM-SUSS 2.1) catalogue

    Exploring the canonical behaviour of long gamma-ray bursts using an intrinsic multiwavelength afterglow correlation

    Get PDF
    In this paper, we further investigate the relationship, reported by Oates et al., between the optical/UV afterglow luminosity (measured at restframe 200 s) and average afterglow decay rate (measured from restframe 200 s onwards) of long duration gamma-ray bursts (GRBs). We extend the analysis by examining the X-ray light curves, finding a consistent correlation. We therefore explore how the parameters of these correlations relate to the prompt emission phase and, using a Monte Carlo simulation, explore whether these correlations are consistent with predictions of the standard afterglow model. We find significant correlations between: log  LO, 200 s and log  LX, 200 s; αO, >200 s and αX, >200 s, consistent with simulations. The model also predicts relationships between log Eiso and log  L200 s; however, while we find such relationships in the observed sample, the slope of the linear regression is shallower than that simulated and inconsistent at ≳3σ. Simulations also do not agree with correlations observed between log  L200 s and α> 200 s, or logEiso logEiso and α> 200 s. Overall, these observed correlations are consistent with a common underlying physical mechanism producing GRBs and their afterglows regardless of their detailed temporal behaviour. However, a basic afterglow model has difficulty explaining all the observed correlations. This leads us to briefly discuss alternative more complex models

    A correlation between the intrinsic brightness and average decay rate of Swift/UVOT gamma-ray burst optical/ultraviolet light curves

    Get PDF
    We examine a sample of 48 Swift/UVOT long gamma-ray burst light curves and find a correlation between the logarithmic luminosity at 200 s and average decay rate determined from 200 s onwards, with a Spearman rank coefficient of −0.58 at a significance of 99.998 per cent (4.2σ). We discuss the causes of the log L200 s–α>200 s correlation, finding it to be an intrinsic property of long gamma-ray bursts, and not resulting from the selection criteria. We find two ways to produce the correlation. One possibility is that there is some property of the central engine, outflow or external medium that affects the rate of energy release so that the bright afterglows release their energy more quickly and decay faster than the fainter afterglows. Alternatively, the correlation may be produced by variation of the observer’s viewing angle, with observers at large viewing angles observing fainter and slower decaying light curves

    Regulation of accretion by its outflow in a symbiotic star: the 2016 outflow fast state of MWC 560

    Get PDF
    How are accretion discs affected by their outflows? To address this question for white dwarfs accreting from cool giants, we performed optical, radio, X-ray, and ultraviolet observations of the outflow-driving symbiotic star MWC 560 (=V694 Mon) during its 2016 optical high state. We tracked multi-wavelength changes that signalled an abrupt increase in outflow power at the initiation of a months-long outflow fast state, just as the optical flux peaked: (1) an abrupt doubling of Balmer absorption velocities; (2) the onset of a 2020 μ\muJy/month increase in radio flux; and (3) an order-of-magnitude increase in soft X-ray flux. Juxtaposing to prior X-ray observations and their coeval optical spectra, we infer that both high-velocity and low-velocity optical outflow components must be simultaneously present to yield a large soft X-ray flux, which may originate in shocks where these fast and slow absorbers collide. Our optical and ultraviolet spectra indicate that the broad absorption-line gas was fast, stable, and dense (≳106.5\gtrsim10^{6.5} cm−3^{-3}) throughout the 2016 outflow fast state, steadily feeding a lower-density (≲105.5\lesssim10^{5.5} cm−3^{-3}) region of radio-emitting gas. Persistent optical and ultraviolet flickering indicate that the accretion disc remained intact. The stability of these properties in 2016 contrasts to their instability during MWC 560's 1990 outburst, even though the disc reached a similar accretion rate. We propose that the self-regulatory effect of a steady fast outflow from the disc in 2016 prevented a catastrophic ejection of the inner disc. This behaviour in a symbiotic binary resembles disc/outflow relationships governing accretion state changes in X-ray binaries
    corecore