117 research outputs found

    The role of anthropogenic habitats in freshwater mussel conservation

    Get PDF
    Anthropogenic freshwater habitats may provide undervalued prospects for long-term conservation as part of species conservation planning. This fundamental, but overlooked, issue requires attention considering the pace that humans have been altering natural freshwater ecosystems and the accelerated levels of biodiversity decline in recent decades. We compiled 709 records of freshwater mussels (Bivalvia, Unionida) inhabiting a broad variety of anthropogenic habitat types (from small ponds to large reservoirs and canals) and reviewed their importance as refuges for this faunal group. Most records came from Europe and North America, with a clear dominance of canals and reservoirs. The dataset covered 228 species, including 34 threatened species on the IUCN Red List. We discuss the conservation importance and provide guidance on how these anthropogenic habitats could be managed to provide optimal conservation value to freshwater mussels. This review also shows that some of these habitats may function as ecological traps owing to conflicting management practices or because they act as a sink for some populations. Therefore, anthropogenic habitats should not be seen as a panacea to resolve conservation problems. More information is necessary to better understand the trade-offs between human use and the conservation of freshwater mussels (and other biota) within anthropogenic habitats, given the low number of quantitative studies and the strong biogeographic knowledge bias that persists.This publication is based upon work from COST Action CA18239, supported by COST (European Cooperation in Science and Technology). A.M.L. was financed by the Institute of Environmental Sciences Jagiellonian University (N18/DBS/000003) and K.N. by the Aragón Government. The authors acknowledge Jarosław Andrzejewski, Bartosz Czader, Anna Fica, Marcin Horbacz, Tomasz Jonderko, Steinar Kålås, Tomasz Kapela, Bjørn Mejdell Larsen, Maciej Pabijan, Katarzyna Pawlik, Ilona Popławska, Joanna Przybylska, Tomasz Przybył, Mateusz Rybak, Kjell Sandaas, Jarosław Słowikowski, Tomasz Szczasny, Michał Zawadzki and Paweł Zowada for providing detailed information on specific examples concerning freshwater mussels in anthropogenic habitats. We thank the editor and two anonymous referees for the valuable suggestions made, which increased the clarity of our manuscript.info:eu-repo/semantics/publishedVersio

    Diet of two syntopic species of Crenuchidae (Ostariophysi: Characiformes) in an Amazonian rocky stream

    Get PDF
    Abstract This study assessed the diet of two poorly known syntopic fish species of the family Crenuchidae, Characidium aff. declivirostre and Leptocharacidium omospilus, in a Presidente Figueiredo´ rocky stream, Amazonas, Brazil. The stomach contents were analyzed and their Frequency of Occurrence (FO %) and Relative Volume (Vol %) were combined in a Feeding Index (IAi). We examined 20 individuals of C. aff. declivirostre and 23 of L. omospilus. The Morisita-Horn Index was used to estimate the overlap between the diets of these species. Immature insects were the most valuable items consumed by both fish species. The diet of C. aff. declivirostre was mainly composed of larvae and pupae of Chironomidae, while L. omospilus predominantly consumed larvae of Hydroptilidae, Hydropyschidae and Pyralidae. Thus, both species were classified as autochthonous insectivorous. Characidium aff. declivirostre was considered a more specialized species, probably reflecting lower feeding plasticity or the use of more restricted microhabitats compared to L. omospilus. When the food items were analyzed at the family taxonomic level, the diet overlap between these species was considered moderate (Morisita-Horn Index = 0.4). However, a more thorough analysis, at the genus level, indicates a very low diet overlap. Therefore, we conclude that the feeding segregation between C. aff. declivirostre and L. omospilus may favor their co-existence, despite their high phylogenetic closeness
    corecore