153 research outputs found

    Working-class royalty: bees beat the caste system

    Get PDF
    The struggle among social classes or castes is well known in humans. Here, we show that caste inequality similarly affects societies of ants, bees and wasps, where castes are morphologically distinct and workers have greatly reduced reproductive potential compared with queens. In social insects, an individual normally has no control over its own fate, whether queen or worker, as this is socially determined during rearing. Here, for the first time, we quantify a strategy for overcoming social control. In the stingless bee Schwarziana quadripunctata, some individuals reared in worker cells avoid a worker fate by developing into fully functional dwarf queens

    ESSÊNCIAS BRASILEIRAS E SUA CONSERVAÇÃO GENÉTICA NO INSTITUTO FLORESTAL DE SÃO PAULO

    Get PDF
    exploração intensa e desordenada de espécies nativas do Brasil, para atender àdemandade madeirada população do país, particularmente do estado de São Paulo, vem ocasionando a extinção de espécies florestais não só de valor comercial, como social e científico. Em decorrência disto, as mesmas começam a apresentar um sério comprometimento de seu potencial genético. [...

    The Integrated Assessment as the main goal for achieving an Ecosystem Approach to Management in the Western European Shelf Seas

    Get PDF
    Providing regional integrated ecosystem assessments (IEA) is a key challenge identified in the ICES Strategic Plan (2014-2018). IEAs are seen as a fundamental link between advice and ecosystem science inachieving Ecosystem Based Management (EBM).While EBM is not a new concept, difficulties in achieving such an ambitious goal have been highlighted by the extensive work conducted in this area. The implementation of new regulation policies, such as the Marine Strategy Framework Directive (MSFD) and the reformed Common Fisheries Policy (CFP) in Europe,have challenged the scientific community to rapidly react despite these difficulties and provide scientific advice to support management decisions concerning these policies. RegionalICES groups have been tasked with developing methods and tools for IEA in their corresponding ecoregions; this is the case of the Working Group on Ecosystem Assessment of Western European Shelf Seas (WGEAWESS). The role of this group is to implement, and test tools and methods for the advisory process, focusing on the North Atlantic European continental shelf, including Celtic Seas, Bay of Biscay and Iberian Waters. In this presentation we show the progress made within this WG during its initial three years of activity, in relation to some of the terms of reference already addressed. An adaptation of the ODEMM framework has been selected as a tool for identifying a) links between components, processes, pressures and states, and b) gaps in data availability and indicator implementation. Some preliminary results of a first IEA exercise will also been shownwith emphasis onthe MSFD descriptors D1 (biological diversity) and D4 (food webs)

    Wave function mapping conditions in Open Quantum Dots structures

    Get PDF
    We discuss the minimal conditions for wave function spectroscopy, in which resonant tunneling is the measurement tool. Two systems are addressed: resonant tunneling diodes, as a toy model, and open quantum dots. The toy model is used to analyze the crucial tunning between the necessary resolution in current-voltage characteristics and the breakdown of the wave functions probing potentials into a level splitting characteristic of double quantum wells. The present results establish a parameter region where the wavefunction spectroscopy by resonant tunneling could be achieved. In the case of open quantum dots, a breakdown of the mapping condition is related to a change into a double quantum dot structure induced by the local probing potential. The analogy between the toy model and open quantum dots show that a precise control over shape and extention of the potential probes is irrelevant for wave function mapping. Moreover, the present system is a realization of a tunable Fano system in the wave function mapping regime.Comment: 6 pages, 6 figure

    An Overall Evaluation Of The Resistance (r) And Pathogenesis-related (pr) Super Families In Soybean, As Compared With Medicago And Arabidopsis

    Get PDF
    Plants have the ability to recognize and respond to a multitude of pathogens, resulting in a massive reprogramming of the plant to activate defense responses including Resistance (R) and Pathogenesis-Related (PR) genes. Abiotic stresses can also activate PR genes and enhance pathogen resistance, representing valuable genes for breeding purposes. The present work offers an overview of soybean Rand PR genes present in the GENOSOJA (Brazilian Soybean Genome Consortium) platform, regarding their structure, abundance, evolution and role in the plant-pathogen metabolic pathway, as compared with Medicago and Arabidopsis. Searches revealed 3,065 R candidates (756 in Soybean, 1,142 in Medicago and 1,167 in Arabidopsis), and PR candidates matching to 1,261 sequences (310, 585 and 366 for the three species, respectively). The identified transcripts were also evaluated regarding their expression pattern in 65 libraries, showing prevalence in seeds and developing tissues. Upon consulting the Super SAGE libraries, 1,072 Rand 481 PR tags were identified in association with the different libraries. Multiple alignments were generated forXa21andPR-2genes, allowing inferences about their evolution. The results revealed interesting insights regarding the variability and complexity of defense genes in soybean, as compared with Medicago and Arabidopsis. © 2012, Sociedade Brasileira de Genética.35SUPPL.1260271Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P., (2002) Molecular Biology of the Cell, p. 1616. , 4th edition. Garland Publishing Company, New York & LondonAltschul, S.F., Gish, W., Miller, W., Myers, E., Basic local alignment search tool (1990) J Mol Biol, 215, pp. 403-410Ashfield, T., Bocian, A., Held, D., Henk, A.D., Marek, L.F., Danesh, D., Penuela, S., Young, N.D., Genetic and physical localization of the soybean Rpg1-b disease resistance gene reveals a complex locus containing several tightly linked families of NBS-LRR genes (2003) Mol Plant Microbe Interact, 16, pp. 817-826Atici, O., Nalbantoglu, B., Antifreeze proteins in higher plants (2003) Phytochemistry, 64, pp. 1187-1196Barbosa-da-Silva, A., Wanderley-Nogueira, A.C., Silva, R.R.M., Belarmino, L.C., Soares-Cavalcanti, N.M., Benko-Iseppon, A.M., In silico survey of resistance (R) genes in Eucalyptus transcriptome (2005) Genet Mol Biol, 28, pp. 562-574Benko-Iseppon, A.M., Galdino, S.L., Calsa, T., Kido, E.A., Tossi, A., Belarmino, L.C., Crovella, S., Overview of plant antimicrobial peptides (2010) Curr Prot Pept Sci, 11, pp. 181-188Bent, A.F., Plant disease resistance genes: Function meets structure (1996) Plant Cell, 8, pp. 1751-1771Bolton, M., Primary metabolism and plant defense-Fuel for the fire (2009) Mol Plant Microbe Interact, 22, pp. 487-497Bonas, U., Anckerveken, G.V., Gene-for-gene interactions: Bacterial avirulence proteins specify plant disease resistance (1999) Curr Opin Plant Biol, 2, pp. 94-98Bonasera, J.M., Kim, J.F., Beer, S.V., PR genes of apple: Identification and expression in response to elicitors and inoculation with Erwinia amylovora (2006) BMC Plant Biol, 6, pp. 23-34Cannon, S.B., May, G.D., Jackson, S.A., Three sequenced legume genomes and many crop species: Rich opportunities for translational genomics (2009) Plant Physiol, 151, pp. 970-977Chester, K.S., The problem of acquired physiological immunity in plants (1933) Quart Rev Phytopathol, 42, pp. 185-209Dafny-Yelin, M., Tzfira, T., Delivery of multiple trans-genes to plant cells (2007) Plant Physiol, 145, pp. 1118-1128Dinesh-Kumar, S.P., Whitham, S., Choi, D., Hehl, R., Corr, C., Baker, B., Transposon tagging of tobacco mosaic virus resistance gene N:I its possible role in the TMV-N-mediated signal transduction pathway (1995) Proc Natl Acad Sci USA, 92, pp. 4175-4180Dixon, M.S., Jones, D.A., Keddie, J.S., Thomas, C.T., Harrison, K., Jones, J.D.G., The tomato Cf2 disease resistance locus comprises two functional genes encoding leucine rich repeats proteins (1996) Cell, 84, pp. 451-459Durrant, W.E., Dong, X., Systemic acquired resistance (2004) Annu Rev Plant Pathol, 42, pp. 185-209Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, B., Cluster analysis and display of genome-wide expression patterns (1998) Genetics, 25, pp. 14863-14868Ellis, J., Jones, D., Structure and function of proteins controlling strain-specific pathogen resistance in plants (2000) Curr Opin Plant Biol, 1, pp. 288-293Ellis, J., Lawrence, G.J., Finnegan, E.J., Anderson, P.A., Contrasting complexity of two rust resistance loci in flax (1995) Proc Natl Acad Sci USA, 92, pp. 4185-4188Ellis, J., Dodds, P., Pryor, T., Structure, function and evolution of plant disease resistance genes (2000) Curr Opin Plant Biol, 3, pp. 278-284Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Ukness, S., Ward, E., Kessman Hand Ryals, J., Requirementofsalicylic acid for the induction of systemic acquired resistance (1993) Science, 261, pp. 754-756Glombitza, S., Dubuis, P.-H., Thulke, O., Welzl, G., Bovet, L., Götz, M., Affenzeller, M., Asnaghi, C., Crosstalk and differential response to abiotic and biotic stressors reflected at the transcriptional level of effector genes from secondary metabolism (2004) Plant Mol Biol, 54, pp. 817-835Griffith, M., Yaish, M.W.F., Antifreeze proteins in overwintering plants: A tale of two activities (2004) Trends Plant Sci, 9, pp. 399-405Hammond-Kosack, K.E., Jones, J.D.G., Plant disease resistance genes (1997) Annu Rev Plant Physiol, 48, pp. 575-607Hon, W.C., Griffith, M., Mlynarz, A., Kwok, Y.C., Yang, D.S.C., Antifreeze proteins in winter rye are similar to pathogenesis-related proteins (1995) Plant Physiol, 109, pp. 879-889Hulbert, S.H., Webb, C.A., Smith, S.M., Sun, Q., Resistance gene complexes: Evolution and utilization (2001) Annu Rev Phytopathol, 39, pp. 285-312Joahal, G.S., Briggs, S.P., Reductase activity encodes by the Hm1 resistance gene in maize (1992) Science, 198, pp. 985-987Kanazin, V., Marek, L.F., Shoemaker, R.C., Resistance gene analogs are conserved and clustered in soybean (1996) Proc Natl Acad Sci USA, 93, pp. 11746-11750Kido, E.A., Barbosa, P.K., Ferreira Neto, J.C.R., Pandolfi, V., Houllou-Kido, L.M., Crovella, S., Benko-Iseppon, A.M., Identification of plant protein kinases in response to abiotic and biotic stresses using Super SAGE (2011) Curr Prot Pept Sci, 12, pp. 643-656Kitajima, S., Sato, F., Plant pathogenesis-related proteins: Molecular mechanisms of gene expression and protein function (1999) J Biochem, 125, pp. 1-8Lavin, M., Herendeen, P.S., Wojciechowski, M.F., Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary (2005) Syst Biol, 54, pp. 575-594Lawrence, G.J., Finnegan, E.J., Ayliffe, M.A., Ellis, J.G., The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene (1995) N. Plant Cell, 7, pp. 1195-1206Leubner-Metzger, G., β-1,3-glucanase gene expression in low-hydrated seeds as a mechanism for dormancy release during tobacco after-ripening (2005) Plant J, 41, pp. 133-145Li, L., He, H., Zhang, J., Wang, X., Bai, S., Stolc, V., Tongprasit, W., Deng, X.W., Transcriptional analysis of highly syntenic regions between Medicago truncatula and Glycine max using tiling microarrays (2008) Genome Biol, 9, pp. R57Libault, M., Farmer, A., Joshi, T., Takahashi, K., Langley, R.J., Franklin, L.D., He, J., Stacey, G., An integrated transcriptome atlas of the crop model Glycine max and its use in comparative analyses in plants (2010) Plant J, 63, pp. 86-99Liu, B., Zhang, S., Zhu, X., Yang, Q., Wu, S., Mei, M., Mauleon, R., Leung, H., Candidate defense genes as predictors of quantitative blast resistance in rice (2004) Mol Plant Microbe Int, 17, pp. 1146-1152Maisonneuve, B., Bellec, Y., Anderson, P., Michelmore, R.W., Rapid mapping of two genes for resistance to downy mildew from Lactuca serriola to existing clusters of resistance genes (1994) Theor Appl Genet, 89, pp. 96-104Matsumura, H., Kruger, D.H., Kahl, G., Terauchi, R., SuperSAGE: A modern platform for genome-wide quantitative transcript profiling (2008) Curr Pharm Biotechnol, 9, pp. 368-374Melotto, M., Coelho, M.F., Pedrosa-Harand, A., Kelly, J.D., Camargo, L.E., The anthracnose resistance locus Co-4 of common bean is located on chromosome 3 and contains putative disease resistance-related genes (2004) Theor Appl Genet, 109, pp. 690-699Metzler, M.C., Cutt, J.R., Klessig, D.F., Isolation and characterization of a gene encoding a PR-1 like protein from Arabidopsis thaliana (1991) Plant Physiol, 96, pp. 346-348Michelmore, R.W., Meyers, B.C., Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process (1998) Genome Res, 8, pp. 1113-1130Mindrinos, M., Katagiri, F., Yu, G.L., Ausubel, F.M., The Arabidopsis thaliana disease resistance gene encodes a protein containing a nucleotide-binding site and leucine rich repeats (1994) Cell, 78, pp. 1089-1099Mudge, J., Cannon, S.B., Kalo, P., Oldroyd, G.E., Roe, B.A., Town, C.D., Young, N.D., Highly syntenic regions in the genomes of soybean, Medicago truncatula and Arabidopsis thaliana (2005) BMC Plant Biol, 5, pp. e15Nanda, A.K., Andrio, E., Marino, D., Pauly, N., Dunand, C., Reactive Oxygen Species during plant-microorganism early interactions (2010) J Integr Plant Biol, 52, pp. 195-204Nurnberg, T., Brunner, F., Innate immunity in plants and animals: Emerging parallels between the recognition of general elicitors and pathogen-associated molecular patterns (2002) Curr Opin Plant Biol, 5, pp. 318-324Page, R.D., (1996) Comp Appl Biosci, 12, pp. 357-358Rayapati, P.J., Lee, M., Gregory, J.W., Wise, R.P., A linkage map of diploid Avena based on RFLP loci and a locus conferring resistance to nine isolates of Puccinia coronata var. 'avenae' (1994) Theor Appl Genet, 89, pp. 831-837Salmeron, J.M., Oldroyd, G.E.D., Romens, C.M.T., Scofield, S.R., Kim, H.S., Lavelle, D.T., Dahlbeck, D., Staskawicz, B.J., Tomato Prf is a member of the leucine rich repeats class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster (1996) Cell, 86, pp. 123-133Shoemaker, R.C., Schlueter, J., Doyle, J.J., Paleopolyploidy and gene duplication in soybean and other legumes (2006) Curr Opin Plant Biol, 9, pp. 104-109Song, W.Y., Pi, L.Y., Wang, G.L., Gardner, J., Holsten, T., Ronald, P.C., Evolution of the rice Xa21 disease resistance genes family (1997) Plant Cell, 9, pp. 1279-1287Song, W.Y., Wang, G.L., Kim, H.S., Pi, L.Y., Gardner, J., Wang, B., Holsten, T., Fauquet, C., A receptor kinase-like protein encoded by the rice disease resistance gene Xa21 (1995) Science, 270, pp. 1804-1806Sparla, F., Rotino, L., Valgimigli, M.C., Pupillo, P., Trost, P., Systemic resistance induced by benzothisdizole in pear inoculated with the agent of fire blight (2004) Sci Hortic, 101, pp. 269-279Tamura, K., Dudley, J., Nei, M., Kumar, S., MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software ver. 4.0 (2007) Mol Biol Evol, 24, pp. 1596-1599Tang, X., Xie, M., Kim, Y.J., Zhou, J., Klessing, D.F., Martin, G.B., Overexpression of Pto activates defense responses and confers broad resistance (1999) Plant Cell, 11, pp. 15-29Thiel, T., Graner, A., Waugh, R., Grosse, I., Close, T.J., Stein, N., Evidence and evolutionary of ancient whole-genome duplication in barley predating the divergence from rice (2009) BMC Evol Biol, 9, pp. 209-227Tornero, P., Gadea, J., Conejero, V., Vera, P., Two PR-1 genes from tomato are differentially regulated and reveal a novel mode of expression for a pathogenesis-related gene during the hypersensitive response and development (1997) Plant Microbe Interact, 10, pp. 624-634Van-Loon, L.C., Geraats, B.P.J., Linthorst, H.J.M., Ethylene as a modulator of disease resistance in plants (2006) Trends Plant Sci, 11, pp. 184-191Van-Loon, L.C., Pierpoint, W.S., Boller, T., Conejero, V., Recommendations for naming plant pathogenesis-related proteins (1999) Plant Mol Biol Rep, 12, pp. 245-264Velazhahan, R., Muthukrishnan, S., Transgenic tobacco plants constitutively overexpressing a rice thaumatin-like protein (PR-5) show enhanced resistance to Alternaria alternata (2003) Plant Biol, 47, pp. 347-354Vergne, E., Grand, X., Ballini, R., Chalvon, V., Saindrenan, P., Tharreau, D., Nottéghem, J.-L., Morel, J.-B., Preformed expression of defense is a hallmark of partial resistance to rice blast fungal pathogen Magnaporthe oryzae (2010) BMC Plant Biol, 10, pp. e206Wanderley-Nogueira, A.C., Mota, N., Lima-Morais, D., Silva, L.C.B., Silva, A.B., Benko-Iseppon, A.M., Abundance and diversity of resistance (R) genes in the sugarcane trans-criptome (2007) Genet Mol Res, 6, pp. 866-889Wang, G.L., Holsten, T.E., Song, W.Y., Wang, H.P., Ronald, P.C., Construction of a rice bacterial artificial chromosome library and identification of clones linked to the Xa21 disease resistance locus (1995) Plant J, 7, pp. 525-533Wendell, J., Genome evolution in polyploids (2000) Plant Mol Biol, 42, pp. 225-249Weng, J.K., Banks, J.A., Chapple, C., Parallels in lignin biosynthesis: A study in Selaginella moellendorffii reveals convergence across 400 million years of evolution (2008) Comm Int Biol, 1, pp. 20-22Wilkstrom, N., Savolainen, V., Chase, M.W., Evolution of the angiosperms: Calibrating the family tree (2001) Proc Soc Biol Sci, 268, pp. 2211-2220Zeier, J., Pink, B., Mueller, M.J., Berger, S., Light conditions influence specific defense responses in incompatible plant-pathogen interactions: Uncoupling systemic resistance from salicylic acid and PR-1 accumulation (2004) Planta, 219, pp. 673-68
    corecore