19 research outputs found

    New insights into the synergism of nucleoside analogs with radiotherapy

    Get PDF
    Nucleoside analogs have been frequently used in combination with radiotherapy in the clinical setting, as it has long been understood that inhibition of DNA repair pathways is an important means by which many nucleoside analogs synergize. Recent advances in our understanding of the structure and function of deoxycytidine kinase (dCK), a critical enzyme required for the anti-tumor activity for many nucleoside analogs, have clarified the mechanistic role this kinase plays in chemo- and radio-sensitization. A heretofore unrecognized role of dCK in the DNA damage response and cell cycle machinery has helped explain the synergistic effect of these agents with radiotherapy. Since most currently employed nucleoside analogs are primarily activated by dCK, these findings lend fresh impetus to efforts focused on profiling and modulating dCK expression and activity in tumors. In this review we will briefly review the pharmacology and biochemistry of the major nucleoside analogs in clinical use that are activated by dCK. This will be followed by discussions of recent advances in our understanding of dCK activation via post-translational modifications in response to radiation and current strategies aimed at enhancing this activity in cancer cells

    A mechanistic role for leptin in human dendritic cell migration: differences between ileum and colon in health and Crohn's disease

    Get PDF
    Dendritic cells (DC) migrate to lymph nodes on expression of C-C motif chemokine receptor 7 (CCR7) and control immune activity. Leptin, an immunomodulatory adipokine, functions via leptin receptors, signaling via the long isoform of receptor, LepRb. Leptin promotes DC maturation and increases CCR7 expression on blood DC. Increased mesenteric fat and leptin occur early in Crohn's disease (CD), suggesting leptin-mediated change in intestinal CCR7 expression on DC as a pro-inflammatory mechanism. We have demonstrated CCR7 expression and capacity to migrate to its ligand macrophage inflammatory protein 3β in normal human ileal DC but not colonic or blood DC. In CD, functional CCR7 was expressed on DC from all sites. Only DC populations containing CCR7-expressing cells produced LepRb; in vitro exposure to leptin also increased expression of functional CCR7 in intestinal DC in a dose-dependent manner. In conclusion, leptin may regulate DC migration from gut, in homeostatic and inflammatory conditions, providing a link between mesenteric obesity and inflammation

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Kinetics of leptin binding to the Q223R leptin receptor.

    Get PDF
    Studies in human populations and mouse models of disease have linked the common leptin receptor Q223R mutation to obesity, multiple forms of cancer, adverse drug reactions, and susceptibility to enteric and respiratory infections. Contradictory results cast doubt on the phenotypic consequences of this variant. We set out to determine whether the Q223R substitution affects leptin binding kinetics using surface plasmon resonance (SPR), a technique that allows sensitive real-time monitoring of protein-protein interactions. We measured the binding and dissociation rate constants for leptin to the extracellular domain of WT and Q223R murine leptin receptors expressed as Fc-fusion proteins and found that the mutant receptor does not significantly differ in kinetics of leptin binding from the WT leptin receptor. (WT: ka 1.76×106±0.193×106 M-1 s-1, kd 1.21×10-4±0.707×10-4 s-1, KD 6.47×10-11±3.30×10-11 M; Q223R: ka 1.75×106±0.0245×106 M-1 s-1, kd 1.47×10-4±0.0505×10-4 s-1, KD 8.43×10-11±0.407×10-11 M). Our results support earlier findings that differences in affinity and kinetics of leptin binding are unlikely to explain mechanistically the phenotypes that have been linked to this common genetic variant. Future studies will seek to elucidate the mechanism by which this mutation influences susceptibility to metabolic, infectious, and malignant pathologies

    Nasal commensal Staphylococcus epidermidis counteracts influenza virus

    No full text
    Several microbes, including Staphylococcus epidermidis (S. epidermidis), a Gram-positive bacterium, live inside the human nasal cavity as commensals. The role of these nasal commensals in host innate immunity is largely unknown, although bacterial interference in the nasal microbiome may promote ecological competition between commensal bacteria and pathogenic species. We demonstrate here that S. epidermidis culture supernatants significantly suppressed the infectivity of various influenza viruses. Using high-performance liquid chromatography together with mass spectrometry, we identified a giant extracellular matrix-binding protein (Embp) as the major component involved in the anti-influenza effect of S. epidermidis. This anti-influenza activity was abrogated when Embp was mutated, confirming that Embp is essential for S. epidermidis activity against viral infection. We also showed that both S. epidermidis bacterial particles and Embp can directly bind to influenza virus. Furthermore, the injection of a recombinant Embp fragment containing a fibronectin-binding domain into embryonated eggs increased the survival rate of virus-infected chicken embryos. For an in vivo challenge study, prior Embp intranasal inoculation in chickens suppressed the viral titres and induced the expression of antiviral cytokines in the nasal tissues. These results suggest that S. epidermidis in the nasal cavity may serve as a defence mechanism against influenza virus infection
    corecore