81 research outputs found

    Geohazards analysis of Pisa tunnel in a fractured incompetent rocks in Zagros Mountains, Iran.

    Get PDF
    The Pisa 2 tunnel with 740 m in length and 20° N trend is located along the Kazerun fault zone in Simply Folded Belt of Zagros, Iran. This tunnel has been excavated in the fractured incompetent marl layers with high expansive pressure of up to 2 kg/cm2. In this study, the geological hazards along the tunnel have been recognized and categorized. This study revealed that, in the long-term usage of the tunnel, the lining did not endure against the loading and the secondary leakages. It is mainly attributed due to the non-efficiencies of drainage and isolation systems in the tunnel site. Therefore, it caused asphalt damage, drainage damage, and wall distortion. FLAC3D software has been used in this research. We conducted various analyses for pre-excavation stress states, syn-excavation, and post-excavation strain states. The results showed no indication of instability and critical deformations during the excavation time. It also revealed that due to the non-efficiencies of drainage and isolation systems against secondary leakages and consequently marl expansion, the volumetric and shear strains (i.e., expansions and displacements) have exceeded from the critical states of strain along the tunnel. For various remedy purpose, this paper attempted several measures that can be taken in order to modify the drainage and isolation systems along the tunnel area. The reconstruction of drainage systems with suitable reinforced concrete and adequate slope has been proposed. The width of channel and isolation of backside of lining and implementation of multi-order outlets (i.e., backside of lining) for draining of groundwater into where the main drainage systems are located in the tunnel gallery were suggested

    Determination of monolayer-protected gold nanoparticle ligand–shell morphology using NMR

    Get PDF
    It is accepted that the ligand shell morphology of nanoparticles coated with a monolayer of molecules can be partly responsible for important properties such as cell membrane penetration and wetting. When binary mixtures of molecules coat a nanoparticle, they can arrange randomly or separate into domains, for example, forming Janus, patchy or striped particles. To date, there is no straightforward method for the determination of such structures. Here we show that a combination of one-dimensional and two-dimensional NMR can be used to determine the ligand shell structure of a series of particles covered with aliphatic and aromatic ligands of varying composition. This approach is a powerful way to determine the ligand shell structure of patchy particles; it has the limitation of needing a whole series of compositions and ligands' combinations with NMR peaks well separated and whose shifts due to the surrounding environment can be large enough

    Long-term Exposure to Traffic-related Air Pollution and Type 2 Diabetes Prevalence in a Cross-sectional Screening-study in the Netherlands

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Air pollution may promote type 2 diabetes by increasing adipose inflammation and insulin resistance. This study examined the relation between long-term exposure to traffic-related air pollution and type 2 diabetes prevalence among 50- to 75-year-old subjects living in Westfriesland, the Netherlands.</p> <p>Methods</p> <p>Participants were recruited in a cross-sectional diabetes screening-study conducted between 1998 and 2000. Exposure to traffic-related air pollution was characterized at the participants' home-address. Indicators of exposure were land use regression modeled nitrogen dioxide (NO<sub>2</sub>) concentration, distance to the nearest main road, traffic flow at the nearest main road and traffic in a 250 m circular buffer. Crude and age-, gender- and neighborhood income adjusted associations were examined by logistic regression.</p> <p>Results</p> <p>8,018 participants were included, of whom 619 (8%) subjects had type 2 diabetes. Smoothed plots of exposure versus type 2 diabetes supported some association with traffic in a 250 m buffer (the highest three quartiles compared to the lowest also showed increased prevalence, though non-significant and not increasing with increasing quartile), but not with the other exposure metrics. Modeled NO<sub>2</sub>-concentration, distance to the nearest main road and traffic flow at the nearest main road were not associated with diabetes. Exposure-response relations seemed somewhat more pronounced for women than for men (non-significant).</p> <p>Conclusions</p> <p>We did not find consistent associations between type 2 diabetes prevalence and exposure to traffic-related air pollution, though there were some indications for a relation with traffic in a 250 m buffer.</p

    Interference management for moving networks in ultra-dense urban scenarios

    Get PDF
    The number of users relying on broadband wireless connectivity while riding public transportation vehicles is increasing significantly. One of the promising solutions is to deploy moving base stations on public transportation vehicles to form moving networks (MNs) that serve these vehicular users inside the vehicles. In this study, we investigated the benefits and challenges in deploying MNs in ultra-dense urban scenarios. We identified that the key challenge limiting the performance of MNs in ultra-dense urban scenarios is inter-cell interference, which is exacerbated by the urban canyon effects. To address this challenge, we evaluated different inter-cell interference coordination and multi-antenna interference suppression techniques for MNs. We showed that in using MNs together with effective interference management approaches, the quality of service for users in vehicles can be significantly improved, with negligible impacts on the performance of regular outdoor users

    A proteomic approach for the identification of novel lysine methyltransferase substrates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Signaling via protein lysine methylation has been proposed to play a central role in the regulation of many physiologic and pathologic programs. In contrast to other post-translational modifications such as phosphorylation, proteome-wide approaches to investigate lysine methylation networks do not exist.</p> <p>Results</p> <p>In the current study, we used the ProtoArray<sup>® </sup>platform, containing over 9,500 human proteins, and developed and optimized a system for proteome-wide identification of novel methylation events catalyzed by the protein lysine methyltransferase (PKMT) SETD6. This enzyme had previously been shown to methylate the transcription factor RelA, but it was not known whether SETD6 had other substrates. By using two independent detection approaches, we identified novel candidate substrates for SETD6, and verified that all targets tested <it>in vitro </it>and in cells were genuine substrates.</p> <p>Conclusions</p> <p>We describe a novel proteome-wide methodology for the identification of new PKMT substrates. This technological advance may lead to a better understanding of the enzymatic activity and substrate specificity of the large number (more than 50) PKMTs present in the human proteome, most of which are uncharacterized.</p

    Localized-Statistical Quantification of Human Serum Proteome Associated with Type 2 Diabetes

    Get PDF
    BACKGROUND: Recent advances in proteomics have shed light to discover serum proteins or peptides as biomarkers for tracking the progression of diabetes as well as understanding molecular mechanisms of the disease. RESULTS: In this work, human serum of non-diabetic and diabetic cohorts was analyzed by proteomic approach. To analyze total 1377 high-confident serum-proteins, we developed a computing strategy called localized statistics of protein abundance distribution (LSPAD) to calculate a significant bias of a particular protein-abundance between these two cohorts. As a result, 68 proteins were found significantly over-represented in the diabetic serum (p<0.01). In addition, a pathway-associated analysis was developed to obtain the overall pathway bias associated with type 2 diabetes, from which the significant over-representation of complement system associated with type 2 diabetes was uncovered. Moreover, an up-stream activator of complement pathway, ficolin-3, was observed over-represented in the serum of type 2 diabetic patients, which was further validated with statistic significance (p = 0.012) with more clinical samples. CONCLUSIONS: The developed LSPAD approach is well fit for analyzing proteomic data derived from biological complex systems such as plasma proteome. With LSPAD, we disclosed the comprehensive distribution of the proteins associated with diabetes in different abundance levels and the involvement of ficolin-related complement activation in diabetes

    The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The final article in a series of three publications examining the global distribution of 41 dominant vector species (DVS) of malaria is presented here. The first publication examined the DVS from the Americas, with the second covering those species present in Africa, Europe and the Middle East. Here we discuss the 19 DVS of the Asian-Pacific region. This region experiences a high diversity of vector species, many occurring sympatrically, which, combined with the occurrence of a high number of species complexes and suspected species complexes, and behavioural plasticity of many of these major vectors, adds a level of entomological complexity not comparable elsewhere globally. To try and untangle the intricacy of the vectors of this region and to increase the effectiveness of vector control interventions, an understanding of the contemporary distribution of each species, combined with a synthesis of the current knowledge of their behaviour and ecology is needed.</p> <p>Results</p> <p>Expert opinion (EO) range maps, created with the most up-to-date expert knowledge of each DVS distribution, were combined with a contemporary database of occurrence data and a suite of open access, environmental and climatic variables. Using the Boosted Regression Tree (BRT) modelling method, distribution maps of each DVS were produced. The occurrence data were abstracted from the formal, published literature, plus other relevant sources, resulting in the collation of DVS occurrence at 10116 locations across 31 countries, of which 8853 were successfully geo-referenced and 7430 were resolved to spatial areas that could be included in the BRT model. A detailed summary of the information on the bionomics of each species and species complex is also presented.</p> <p>Conclusions</p> <p>This article concludes a project aimed to establish the contemporary global distribution of the DVS of malaria. The three articles produced are intended as a detailed reference for scientists continuing research into the aspects of taxonomy, biology and ecology relevant to species-specific vector control. This research is particularly relevant to help unravel the complicated taxonomic status, ecology and epidemiology of the vectors of the Asia-Pacific region. All the occurrence data, predictive maps and EO-shape files generated during the production of these publications will be made available in the public domain. We hope that this will encourage data sharing to improve future iterations of the distribution maps.</p

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Interaction of Copper-Based Nanoparticles to Soil, Terrestrial, and Aquatic Systems: Critical Review of the State of the Science and Future Perspectives

    Get PDF
    In the past two decades, increased production and usage of metallic nanoparticles (NPs) has inevitably increased their discharge into the different compartments of the environment, which ultimately paved the way for their uptake and accumulation in various trophic levels of the food chain. Due to these issues, several questions have been raised on the usage of NPs in everyday life and has become a matter of public health concern. Among the metallic NPs, Cu-based NPs have gained popularity due to their cost-effectiveness and multifarious promising uses. Several studies in the past represented the phytotoxicity of Cu-based NPs on plants. However, comprehensive knowledge is still lacking. Additionally, the impact of Cu-based NPs on soil organisms such as agriculturally important microbes, fungi, mycorrhiza, nematode, and earthworms are poorly studied. This review article critically analyses the literature data to achieve a more comprehensive knowledge on the toxicological profile of Cu-based NPs and increase our understanding of the effects of Cu-based NPs on aquatic and terrestrial plants as well as on soil microbial communities. The underlying mechanism of biotransformation of Cu-based NPs and the process of their penetration into plants has also been discussed herein. Overall, this review could provide valuable information to design rules and regulations for the safe disposal of Cu-based NPs into a sustainable environment
    corecore