8 research outputs found

    Evaluation of appendicitis risk prediction models in adults with suspected appendicitis

    Get PDF
    Background Appendicitis is the most common general surgical emergency worldwide, but its diagnosis remains challenging. The aim of this study was to determine whether existing risk prediction models can reliably identify patients presenting to hospital in the UK with acute right iliac fossa (RIF) pain who are at low risk of appendicitis. Methods A systematic search was completed to identify all existing appendicitis risk prediction models. Models were validated using UK data from an international prospective cohort study that captured consecutive patients aged 16–45 years presenting to hospital with acute RIF in March to June 2017. The main outcome was best achievable model specificity (proportion of patients who did not have appendicitis correctly classified as low risk) whilst maintaining a failure rate below 5 per cent (proportion of patients identified as low risk who actually had appendicitis). Results Some 5345 patients across 154 UK hospitals were identified, of which two‐thirds (3613 of 5345, 67·6 per cent) were women. Women were more than twice as likely to undergo surgery with removal of a histologically normal appendix (272 of 964, 28·2 per cent) than men (120 of 993, 12·1 per cent) (relative risk 2·33, 95 per cent c.i. 1·92 to 2·84; P < 0·001). Of 15 validated risk prediction models, the Adult Appendicitis Score performed best (cut‐off score 8 or less, specificity 63·1 per cent, failure rate 3·7 per cent). The Appendicitis Inflammatory Response Score performed best for men (cut‐off score 2 or less, specificity 24·7 per cent, failure rate 2·4 per cent). Conclusion Women in the UK had a disproportionate risk of admission without surgical intervention and had high rates of normal appendicectomy. Risk prediction models to support shared decision‐making by identifying adults in the UK at low risk of appendicitis were identified

    Porcine dermis implants in soft-tissue reconstruction: current status

    No full text
    Neil J Smart,1 Nicholas Bryan,2 John A Hunt,2 Ian R Daniels1 1Exeter Surgical Health Services Research Unit, Royal Devon and Exeter Hospital, Exeter, UK; 2Clinical Engineering (UKCTE), The Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK Abstract: Soft-tissue reconstruction for a variety of surgical conditions, such as abdominal wall hernia or pelvic organ prolapse, remains a challenge. There are numerous meshes available that may be simply categorized as either synthetic or biologic. Within biologic meshes, porcine dermal meshes have come to dominate the market. This review examines the current evidence for their use and the limitations of knowledge. Although there is increasing evidence to support their safety, long-term follow-up studies that support their efficacy are lacking. Numerous clinical trials that remain ongoing may help elucidate their precise role in soft-tissue reconstruction. Keywords: hernia, mesh, xenograft, biologi

    Characterisation and comparison of the host response of 6 tissue-based surgical implants in a subcutaneous in vivo rat model

    No full text
    Background Hernia repair often involves fascial augmentation using biologic prostheses. Small processing changes during preparation modulate host tissue response, which influence material efficacy and longevity. In this pilot study, a rat model was used to determine the specific influence of tissue origin, decellularisation treatment and 1,6-hexamethylene diisocyanate (HMDI) cross-linking. Methods Materials (1 cm2) were implanted subcutaneously into 6-week-old Wistar rats (4 materials per animal, n=6/material per time point) for 2, 5, 7, 14 and 28 days. Histologic processing was carried out after resin infiltration, observing classical histopathology and pathologic indexing. Materials comprised 6 tissue-based grafts covering both experimental and commercial porcine decellularised dermal and small intestinal submucosal materials. Results Subcutaneous delivery of biologics demonstrated material-specific inflammatory/host responses. Controlled variations of the Permacol™ manufacturing process showed sodium dodecyl sulfate (SDS) was the most proinflammatory decellularisation reagent, and HMDI cross-linking had no effect on host response. All materials remained recoverable after 28 days, although Surgisis™ had partially resorbed. Conclusion Differences in host responses exist between biologic implants for hernia repair in this rat model. It is postulated that these modifications are induced during processing and may have an effect on the clinical outcome of hernia repair. </jats:sec

    A review of biocompatibility in hernia repair; considerations in vitro and in vivo for selecting the most appropriate repair material.

    No full text
    Repair of hernia typically makes use of a prosthetic material; synthetic or biologic in nature. Any material which enters the body is subject to interrogation by the inflammation and immune system in addition to numerous other cell families, the outcome of which ultimately determines the success of the repair. In this review, we discuss the fundamental biology which occurs in situ when a biomaterial associates with a tissue, compare and contrast the techniques available to predict this in vitro, and review how features of hernia repair materials specifically may manipulate tissue interrogation and integration. Finally, we conclude our article by examining how biocompatibility impacts surgical practise and how a better understanding of the manner by which materials and tissues interact could benefit hernia repair.Pre-print immediately, or accepted manuscript - 12 month embarg

    “Complex abdominal wall” management: evidence-based guidelines of the Italian Consensus Conference

    No full text
    corecore