15 research outputs found

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.Publisher PDFPeer reviewe

    Usefulness of a clinical questionnaire for diagnosis of respiratory disorders of sleep in children with neuromuscular diseases Utilidad de un cuestionario clínico para el diagnóstico de trastornos respiratorios del sueño en niños con enfermedades neuromus

    No full text
    Objectives: To analyze the usefulness of a clinical questionnaire for the diagnosis of sleep disordered breathing in children with neuromuscular diseases. Patients and Methods: A sleep questionnaire and a polysom-nography were performed in a cohort of 21 children (14 boys) with neuromuscular diseases. ROC analysis was used to assess the diagnostic accuracy of the questionnaire for diagnosing sleep disordered breathing compared with polysomnography. Results: Median age was 10.7 years (2-17). According to polysomnogra-phy, 8 patients were classified as normal, 3 had primary snoring, 5 had central sleep apnea syndrome and 5 an obstructive sleep apnea syndrome. Eleven questionnaire's scores suggested sleep disordered breathing. The questionnaire's score showed a sensitivity of 75%, specificity of 60%, positive predictive value of 33% and negative predictive value of 90% for the diagnosis of an obstructive sleep apnea syndrome. The same figure for the diagnosis of a central sleep apnea syn

    Prevalencia disímil de trastornos respiratorios del sueño en escolares

    No full text

    Scoring tail damage in pigs: an evaluation based on recordings at Swedish slaughterhouses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is increasing interest in recording tail damage in pigs at slaughter to identify problem farms for advisory purposes, but also for benchmarking within and between countries as part of systematic monitoring of animal welfare. However, it is difficult to draw conclusions when comparing prevalence’s between studies and countries partly due to differences in management (e.g. differences in tail docking and enrichment routines) and partly due to differences in the definition of tail damage.</p> <p>Methods</p> <p>Tail damage and tail length was recorded for 15,068 pigs slaughtered during three and four consecutive days at two slaughterhouses in Sweden. Tail damage was visually scored according to a 6-point scale and tail length was both visually scored according to a 5-point scale and recorded as tail length in centimetres for pigs with injured or shortened tails.</p> <p>Results</p> <p>The total prevalence of injury or shortening of the tail was 7.0% and 7.2% in slaughterhouse A and B, respectively. When only considering pigs with half or less of the tail left, these percentages were 1.5% and 1.9%, which is in line with the prevalence estimated from the routine recordings at slaughter in Sweden. A higher percentage of males had injured and/or shortened tails, and males had more severely bitten tails than females.</p> <p>Conclusions</p> <p>While the current method to record tail damage in Sweden was found to be reliable as a method to identify problem farms, it clearly underestimates the actual prevalence of tail damage. For monitoring and benchmarking purposes, both in Sweden and internationally, we propose that a three graded scale including both old and new tail damage would be more appropriate. The scale consists of one class for no tail damage, one for mild tail damage (injured or shortened tail with more than half of the tail remaining) and one for severe tail damage (half or less of the tail remaining).</p

    Die Flimmerbewegung

    No full text

    Consistent patterns of common species across tropical tree communities

    No full text
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1–6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees
    corecore