21,490 research outputs found
Stellar wind-magnetosphere interaction at exoplanets: computations of auroral radio powers
We present calculations of the auroral radio powers expected from exoplanets
with magnetospheres driven by an Earth-like magnetospheric interaction with the
solar wind. Specifically, we compute the twin cell-vortical ionospheric flows,
currents, and resulting radio powers resulting from a Dungey cycle process
driven by dayside and nightside magnetic reconnection, as a function of
planetary orbital distance and magnetic field strength. We include saturation
of the magnetospheric convection, as observed at the terrestrial magnetosphere,
and we present power law approximations for the convection potentials, radio
powers and spectral flux densities. We specifically consider a solar-age system
and a young (1 Gyr) system. We show that the radio power increases with
magnetic field strength for magnetospheres with saturated convection potential,
and broadly decreases with increasing orbital distance. We show that the
magnetospheric convection at hot Jupiters will be saturated, and thus unable to
dissipate the full available incident Poynting flux, such that the magnetic
Radiometric Bode's Law (RBL) presents a substantial overestimation of the radio
powers for hot Jupiters. Our radio powers for hot Jupiters are 5-1300 TW
for hot Jupiters with field strengths of 0.1-10 orbiting a Sun-like star,
while we find that competing effects yield essentially identical powers for hot
Jupiters orbiting a young Sun-like star. However, in particular for planets
with weaker magnetic fields our powers are higher at larger orbital distances
than given by the RBL, and there are many configurations of planet that are
expected to be detectable using SKA.Comment: Accepted for publication in Mon. Not. R. Astron. So
The pre-solicitation phase of Government R and D contracting
Decision environment during pre-solicitation phase of procurement cycle in government agency contractin
Towards a geometrical interpretation of quantum information compression
Let S be the von Neumann entropy of a finite ensemble E of pure quantum
states. We show that S may be naturally viewed as a function of a set of
geometrical volumes in Hilbert space defined by the states and that S is
monotonically increasing in each of these variables. Since S is the Schumacher
compression limit of E, this monotonicity property suggests a geometrical
interpretation of the quantum redundancy involved in the compression process.
It provides clarification of previous work in which it was shown that S may be
increased while increasing the overlap of each pair of states in the ensemble.
As a byproduct, our mathematical techniques also provide a new interpretation
of the subentropy of E.Comment: 11 pages, latex2
NAIP/NLRC4 inflammasome activation in MRP8+ cells is sufficient to cause systemic inflammatory disease.
Inflammasomes are cytosolic multiprotein complexes that initiate protective immunity in response to infection, and can also drive auto-inflammatory diseases, but the cell types and signalling pathways that cause these diseases remain poorly understood. Inflammasomes are broadly expressed in haematopoietic and non-haematopoietic cells and can trigger numerous downstream responses including production of IL-1β, IL-18, eicosanoids and pyroptotic cell death. Here we show a mouse model with endogenous NLRC4 inflammasome activation in Lysozyme2 + cells (monocytes, macrophages and neutrophils) in vivo exhibits a severe systemic inflammatory disease, reminiscent of human patients that carry mutant auto-active NLRC4 alleles. Interestingly, specific NLRC4 activation in Mrp8 + cells (primarily neutrophil lineage) is sufficient to cause severe inflammatory disease. Disease is ameliorated on an Asc -/- background, and can be suppressed by injections of anti-IL-1 receptor antibody. Our results provide insight into the mechanisms by which NLRC4 inflammasome activation mediates auto-inflammatory disease in vivo
Low NO(x) heavy fuel combustor program
The 'low nitrogen oxides heavy fuel combustor' program is described. Main program objectives are to generate and demonstrate the technology required to develop durable gas turbine combustors for utility and industrial applications, which are capable of sustained, environmentally acceptable operation with minimally processed petroleum residual fuels. The program will focus on 'dry' reductions of oxides of nitrogen, improved combustor durability, and satisfactory combustion of minimally processed petroleum residual fuels. Other technology advancements sought include: fuel flexibility for operation with petroleum distillates, blends of petroleum distillates and residual fuels, and synfuels (fuel oils derived from coal or shale); acceptable exhaust emissions of carbon monoxide, unburned hydrocarbons, sulfur oxides and smoke; and retrofit capability to existing engines
Modeling and inference of multisubject fMRI data
Functional magnetic resonance imaging (fMRI) is a
rapidly growing technique for studying the brain in
action. Since its creation [1], [2], cognitive scientists
have been using fMRI to understand how we remember,
manipulate, and act on information in our environment.
Working with magnetic resonance physicists, statisticians, and
engineers, these scientists are pushing the frontiers of knowledge
of how the human brain works.
The design and analysis of single-subject fMRI studies
has been well described. For example, [3], chapters 10
and 11 of [4], and chapters 11 and 14 of [5] all give accessible
overviews of fMRI methods for one subject. In contrast,
while the appropriate manner to analyze a group of
subjects has been the topic of several recent papers, we do
not feel it has been covered well in introductory texts and
review papers. Therefore, in this article, we bring together
old and new work on so-called group modeling of fMRI
data using a consistent notation to make the methods more
accessible and comparable
Seeding systems for use with a laser velocimeter in large scale wind tunnels
Three seeding systems have been used in the 4- by 7- Meter Tunnel at NASA Langley Research Center: Kerosene smoke, solid particle dry dispersing, and solid particle liquid dispersing. It is anticipated that the liquid dispersing system will be used in all future applications at this facility because: (1) it has a steady output; (2) it is easy to operate and reconfigure; and, (3) it delivers particles of near uniform size
Permutation Inference for Canonical Correlation Analysis
Canonical correlation analysis (CCA) has become a key tool for population
neuroimaging, allowing investigation of associations between many imaging and
non-imaging measurements. As other variables are often a source of variability
not of direct interest, previous work has used CCA on residuals from a model
that removes these effects, then proceeded directly to permutation inference.
We show that such a simple permutation test leads to inflated error rates. The
reason is that residualisation introduces dependencies among the observations
that violate the exchangeability assumption. Even in the absence of nuisance
variables, however, a simple permutation test for CCA also leads to excess
error rates for all canonical correlations other than the first. The reason is
that a simple permutation scheme does not ignore the variability already
explained by previous canonical variables. Here we propose solutions for both
problems: in the case of nuisance variables, we show that transforming the
residuals to a lower dimensional basis where exchangeability holds results in a
valid permutation test; for more general cases, with or without nuisance
variables, we propose estimating the canonical correlations in a stepwise
manner, removing at each iteration the variance already explained, while
dealing with different number of variables in both sides. We also discuss how
to address the multiplicity of tests, proposing an admissible test that is not
conservative, and provide a complete algorithm for permutation inference for
CCA.Comment: 49 pages, 2 figures, 10 tables, 3 algorithms, 119 reference
Conserved functional consequences of disease-associated mutations in the slide helix of Kir6.1 and Kir6.2 subunits of the ATP-sensitive potassium channel
- …
