research

Towards a geometrical interpretation of quantum information compression

Abstract

Let S be the von Neumann entropy of a finite ensemble E of pure quantum states. We show that S may be naturally viewed as a function of a set of geometrical volumes in Hilbert space defined by the states and that S is monotonically increasing in each of these variables. Since S is the Schumacher compression limit of E, this monotonicity property suggests a geometrical interpretation of the quantum redundancy involved in the compression process. It provides clarification of previous work in which it was shown that S may be increased while increasing the overlap of each pair of states in the ensemble. As a byproduct, our mathematical techniques also provide a new interpretation of the subentropy of E.Comment: 11 pages, latex2

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020