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Cantu syndrome (CS) is a condition characterized by a range
of anatomical defects, including cardiomegaly, hyperflexibility
of the joints, hypertrichosis, and craniofacial dysmorphology.
CS is associated with multiple missense mutations in the genes
encoding the regulatory sulfonylurea receptor 2 (SUR2) sub-
units of the ATP-sensitive K� (KATP) channel as well as two
mutations (V65M and C176S) in the Kir6.1 (KCNJ8) subunit.
Previous analysis of leucine and alanine substitutions at the Val-
65-equivalent site (Val-64) in Kir6.2 indicated no major effects
on channel function. In this study, we characterized the effects
of both valine-to-methionine and valine-to-leucine substitu-
tions at this position in both Kir6.1 and Kir6.2 using ion flux and
patch clamp techniques. We report that methionine substitu-
tion, but not leucine substitution, results in increased open state
stability and hence significantly reduced ATP sensitivity and a
marked increase of channel activity in the intact cell irrespective
of the identity of the coassembled SUR subunit. Sulfonylurea
inhibitors, such as glibenclamide, are potential therapies for CS.
However, as a consequence of the increased open state stability,
both Kir6.1(V65M) and Kir6.2(V64M) mutations essentially
abolish high-affinity sensitivity to the KATP blocker glibencl-
amide in both intact cells and excised patches. This raises the
possibility that, at least for some CS mutations, sulfonylurea
therapy may not prove to be successful and highlights the need
for detailed pharmacogenomic analyses of CS mutations.

ATP-sensitive K� (KATP)6 channels, found throughout the
body, are generated as octameric complexes consisting of four

pore-forming Kir6.1 or Kir6.2 subunits with four regulatory
sulfonylurea receptor (SUR1 or SUR2) subunits. SUR1 and
Kir6.2 are prominently expressed in the pancreas and neurons,
and hence mutations underlie hyperinsulinism, diabetes, and
neurological disorders (1). Cantu syndrome (CS) is character-
ized by a range of apparently disparate features, including car-
diomegaly, hyperflexibility of the joints, hypertrichosis, and
craniofacial dysmorphology as well as multiple cardiovascular
features (2–5). Several reports of missense mutations in the
genes encoding the SUR2 and Kir6.1 subunits (ABCC9 and
KCNJ8, respectively), which are expressed prominently in car-
diovascular tissues, provide strong evidence that CS arises
from KATP gain of function (GOF) (6 –10). Gain of function
in SUR2- or Kir6.1-containing KATP channels would be
expected to hyperpolarize the membrane potential and de-
crease excitability, particularly in smooth muscle cells (11).
Decreased vascular tone may explain many CS features,
including persistent patent ductus arteriosus, dilated and
tortuous vessels, lowered blood pressure, increased blood
volume, and consequent cardiomegaly.

Although rare, CS is a debilitating syndrome, currently with
no specific therapy. Sulfonylureas are potent blockers of KATP
channels. These drugs have proven highly beneficial in treat-
ment of neonatal diabetes resulting from GOF in SUR1- and
Kir6.2-dependent channels (12, 13). However, as the molecular
defect becomes more severe, the drug effect tends to decline
and become ineffective in certain cases (14 –17). Whether such
effects occur in SUR2- and Kir6.1-dependent channels is not
known.

To date, two KCNJ8 mutations, encoding Kir6.1(V65M) and
Kir6.1(C176S), have been reported in association with CS (5,
10). Analogous to residues Cys-166 and Val-64 in Kir6.2, Cys-
176 and Val-65 of Kir6.1 are predicted to be positioned in close
proximity at the bottom of transmembrane helix 2 (TM2) and
the N-terminal slide helix, respectively (see Fig. 1) (18, 19), rais-
ing the possibility that mutation of either one increases
channel activity by the same mechanism. Interestingly, pre-
vious analysis of leucine and alanine substitutions at the
equivalent site (Val-64) in Kir6.2 subunit indicated that
these substitutions were tolerated without effects on chan-
nel function and that such mutations were therefore not
causally associated with neonatal diabetes (20). In this study,
we sought to resolve the consequences of methionine versus
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leucine substitutions at this position on channel function
and sulfonylurea pharmacology.

Results

Kir6.1(V65M), but not Kir6.1(V65L), results in KATP gain of
function

To study recombinant channels containing mutant subunits,
COSm6 cells were transfected with WT or mutant Kir6.1 and
either SUR1 or SUR2A. Channel activity was first assayed using a
radioactive Rb� (86Rb�) efflux assay. When expressed with SUR1,
Kir6.1(V65M) exhibited markedly increased KATP-dependent
efflux rates compared with WT in both basal conditions (Ringer’s
solution) and in the presence of the SUR1-selective KATP activator
diazoxide as shown in Fig. 2, A and B). In contrast, KATP-depen-
dent efflux rates for Kir6.1(V65L) were not significantly different
from WT in either condition (Fig. 2, A and B).

When KATP channels were activated by incubation with oli-
gomycin and 2-D-deoxyglucose (metabolic inhibition (MI)), no
significant effect on efflux rate was observed for either V65M
or V65L (Fig. 2C). MI typically leads to maximal activation of
all available channels; hence, these results suggest that nei-
ther mutation affects the maximal available conductance

and therefore that channel density was unaffected. When
expressed with SUR2A, the KATP-dependent basal flux rate
was very low for both WT and mutant Kir6.1 subunits (Fig.
3A), likely due to lower expression level and decreased Mg-
nucleotide activation of the SUR2A subunit (21). However,
when channels were activated with the SUR2-selective acti-
vator pinacidil, a marked increase in KATP-dependent flux
was seen for V65M-containing, but not V65L-containing,
channels, when compared with WT (Fig. 3B). Maximum
KATP-dependent efflux rates in MI were significantly higher
for V65M than for WT when expressed with SUR2A (Fig.
3C). This suggests that V65M increases maximal conduct-
ance, although this analysis does not distinguish between
increased channel density or more complete activation of
available channels.

The conserved effects of valine-to-methionine or -leucine
substitution at the equivalent residue in Kir6.2

Val-65 in Kir6.1 and the homologous residue in Kir6.2
(Val-64) lie within the amphipathic N-terminal slide helix,
which is highly conserved in Kir channels. As shown in Fig. 4,
when coexpressed with SUR1, Kir6.2(V64M) also significantly

Figure 1. CS-associated mutations in Kir6.1. To date, two mutations in Kir6.1 (KCNJ8) have been identified in CS patients, Kir6.1(C176S) and Kir6.1(V65M), at
residues that are conserved in Kir6.2. A, a Kir6.1 homology model based upon the recent cryo-EM structures for Kir6.2/SUR1 (18, 19) shows that Cys-176 and
Val-65 (equivalent to Cys-166 and Val-64 in Kir6.2) lie in close proximity. Inset, Val-65 (Val-64) faces TM2 on the slide helix, whereas Cys-176 (Cys-166) lies nearby in
TM2. B, Kir6.x and SUR subunits coassemble as obligate hetero-octamers in a 1:1 stoichiometry. Here two SUR subunits are omitted for display. C, the Kir6.1(V65M)
mutation lies in a highly conserved N-terminal sequence within the slide helix. D, average root mean square deviation (RMSD) from three independent 100-ns MD
simulations of the modeled Kir6.1 subunits show that Kir6.1 WT, Kir6.1(V65L), and Kir6.1(V65M) subunits are stable.
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increased basal and pinacidil-activated KATP-dependent efflux
rates. Conversely, the V64L mutation had no significant effect,
consistent with the previous report that this mutation does
not alter channel function (20). When coexpressed with
SUR2A, marked increases in basal and pinacidil-activated
efflux rates were again observed for Kir6.2(V64M) but not
for Kir6.1(V65L) (Fig. 5, A and B). The same maximum efflux
rates in MI for WT, V64M, and V65L, irrespective of the SUR

subunit (Figs. 4C and 5C), imply no effects of either mutation
on channel density.

The molecular mechanism of KATP GOF conferred by
valine-to-methionine mutations

Taken together, the above data demonstrate that substitu-
tion of valine by methionine at residue 65 in Kir6.1 or residue 64
in Kir6.2 results in gain of function of expressed KATP channels.

Figure 2. Kir6.1(V65M), but not Kir6.1(V65L), increases SUR1-dependent KATP channel activity in intact cells. Cumulative 86Rb� efflux as a function of
time was measured in GFP-transfected control COSm6 cells and in cells transiently expressing WT or mutant Kir6.1 with SUR1. Experiments were performed in
basal conditions in Ringer’s solution (A) or in the presence of the K� channel opener diazoxide (B) or the metabolic inhibitors (MI) oligomycin and 2-deoxy-D-
glucose (C). Data points and error bars represent mean and S.E. of eight to 18 experiments. Summary representations of the mean cumulative flux at 25 min are
shown on the right (* denotes statistical significance as determined by unpaired Student’s t tests; p � 0.05).

Conserved gain-of-function Kir6.1 and Kir6.2 mutations
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To investigate the molecular mechanism, we examined nucle-
otide sensitivity of channels in excised, inside-out patch clamp
experiments. As shown in Fig. 6, channels comprising WT
Kir6.2 and SUR2A were inhibited by Mg2�-free ATP with an
IC50 of �30 �M, which was not significantly altered by the V64L
mutation. In contrast, the V64M mutation resulted in �6-fold
reduction in ATP sensitivity (Fig. 6). Decreased ATP sensitivity
could arise from a change in the affinity of the channel for ATP
or, because ATP binds to and stabilizes closed states of the

channel, a change in intrinsic open state stability. Recent
cryo-EM structures (18, 19) confirm that the slide helix of
Kir6.2 is structurally distinct from the ATP-binding site, and
thus a direct effect on ATP binding is not expected. In contrast,
multiple studies have demonstrated that mutations in the slide
helix act to stabilize open conformations of Kir channels (22–
24). PIP2 in the cytoplasmic leaflet is essential for Kir channel
activity (25). At ambient levels in the cytoplasmic leaflet, WT
Kir6.2/SUR1 channel open probability is �0.5 but approaches 1

Figure 3. Kir6.1(V65M), but not Kir6.1(V65L), increases SUR2A-dependent KATP channel activity in intact cells. Cumulative 86Rb� efflux as a function of
time was measured in GFP-transfected control COSm6 cells and in cells transiently expressing WT or mutant Kir6.1 with SUR2A. Experiments were performed
in basal conditions in Ringer’s solution (A) or in the presence of the K� channel opener pinacidil (B) or the metabolic inhibitors (MI) oligomycin and 2-deoxy-
D-glucose (C). Data points and error bars represent mean and S.E. of three experiments. Summary representations of the mean cumulative flux at 25 min are
shown on the right (* denotes statistical significance as determined by Mann-Whitney U test; p � 0.05).
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as PIP2 is increased in the membrane (26). Mutations that
intrinsically stabilize or destabilize the channel open state
increase or decrease, respectively, the basal open probability,
which can be assessed by maximizing the open probability by
adding exogenous PIP2 (26). To estimate the effect of the V64M
mutation on channel open state stability, the activating
response to exogenous PIP2 was therefore assessed for WT
Kir6.2- and Kir6.2(V64M)-containing channels (see “Experi-
mental procedures” and Ref. 14). The analysis indicates that the

V64M mutation significantly increases the intrinsic apparent
Po under ambient conditions following patch excision (from
�0.6 in WT to �1.0 in Kir6.2(V64M); Fig. 7, A–C).

The open state-stabilizing valine-to-methionine substitutions
decrease sulfonylurea sensitivity in both Kir6.2 and Kir6.1

Second generation sulfonylurea drugs, such as glibencl-
amide, inhibit SUR2-containing KATP channels with moderate
affinity (27, 28) and therefore may serve as a potential pharma-

Figure 4. Kir6.2(V64M), but not Kir6.2(V64L), increases SUR1-dependent KATP channel activity in intact cells. Cumulative 86Rb� efflux as a function of
time was measured in GFP-transfected control COSm6 cells and in cells transiently expressing WT or mutant Kir6.2 with SUR1. Experiments were performed in
basal conditions in Ringer’s solution (A) or in the presence of the K� channel opener diazoxide (B) or the metabolic inhibitors (MI) oligomycin and 2-deoxy-D-
glucose (C). Data points and error bars represent mean and S.E. of three to five experiments. Summary representations of the mean cumulative flux at 25 min
are shown on the right (* denotes statistical significance as determined by Mann-Whitney U test; p � 0.05).
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cotherapy for CS. However, it has previously been demon-
strated that open state-stabilizing mutations in Kir6.x subunits
can impair sulfonylurea inhibition (14 –16). The effect of 10 �M

glibenclamide on KATP-dependent rubidium effluxes was
assessed in cells expressing either WT or V64M mutant Kir6.2
with SUR2A. As shown in Fig. 8, MI-activated WT channel
fluxes were inhibited �75% by glibenclamide, but there was no
significant inhibition of Kir6.2(V64M) channels.

All known CS patients are heterozygous, and we modeled
heterozygosity by cotransfecting WT and V64M mutant Kir6.2

with SUR2A subunits. Glibenclamide inhibition was again mark-
edly reduced by the V64M mutation with only �20% inhibition of
MI-activated Rb� fluxes (Fig. 8, A and B). We also examined the
sensitivity of Kir6.2 � SUR2A and Kir6.2(V64M) � SUR2A chan-
nels to glibenclamide inhibition in inside-out patch clamp record-
ings (Fig. 8, C and D). In agreement with the above results, sensi-
tivity was again markedly reduced by the V64M mutation (Fig. 8, C
and D) with almost no inhibition even at 10 �M glibenclamide.

As the open state-stabilizing effects appear to be similar for
the Kir6.2(V64M) and Kir6.1(V65M) mutations, the effects of

Figure 5. Kir6.2(V64M), but not Kir6.2(V64L), increases SUR2A-dependent KATP channel activity in intact cells. Cumulative 86Rb� efflux as a function of
time was measured in GFP-transfected control COSm6 cells and in cells transiently expressing WT or mutant Kir6.2 with SUR2A. Experiments were performed
in basal conditions in Ringer’s solution (A) or in the presence of the K� channel opener pinacidil (B) or the metabolic inhibitors (MI) oligomycin and 2-deoxy-
D-glucose (C). Data points and error bars represent mean and S.E. of three to six experiments. Summary representations of the mean cumulative flux at 25 min
are shown on the right (* denotes statistical significance as determined by Mann-Whitney U test; p � 0.05).

Conserved gain-of-function Kir6.1 and Kir6.2 mutations

17392 J. Biol. Chem. (2017) 292(42) 17387–17398

 at W
ashington U

niversity on O
ctober 26, 2017

http://w
w

w
.jbc.org/

D
ow

nloaded from
 



mutations on inhibitor sensitivity are also likely to be con-
served. However, a previous report suggested that sulfonylurea
sensitivity may be differentially affected by mutations in the
slide helix of Kir6.2 versus Kir6.1 (15). Thus, we also sought to
confirm the effect of the Kir6.1(V65M) mutation itself on glib-
enclamide inhibition. Due to very low Rb� fluxes and low
density in patch-clamp recordings for Kir6.1-only-containing
channels, we coexpressed Kir6.1 WT or Kir6.1(V65M) with
WT Kir6.2 to yield heterotetramers as described previously
(10). As expected, heteromeric Kir6.2/Kir6.1(V65M) channels
exhibited �5-fold lower ATP sensitivity in excised patch clamp
recordings than Kir6.2/Kir6.1 WT channels (Fig. 9A). In Rb�

flux experiments, the effect of 10 �M glibenclamide on KATP-
dependent efflux was also reduced from �50% for WT Kir6.1-
containing channels to �30% for V65M-containing channels
(Fig. 9, C and D), and glibenclamide sensitivity was markedly
reduced in Kir6.2/Kir6.1(V65M) channels in inside-out patch
clamp recordings (Fig. 9, E and F).

Discussion

The recent identification of multiple missense mutations in
SUR2 (ABCC9) and Kir6.1 (KCNJ8), which all result in KATP
GOF, demonstrates that CS arises primarily from KATP channel
GOF (2, 10). Brownstein et al. (5) initially reported the
Kir6.1(V65M) mutation in a case report with the prediction
that the mutation was causal. However, a previous report
showed that other substitutions at the equivalent (Val-64) res-
idue in Kir6.2 are tolerated without significant effects on KATP
function (20). This raises the possibility that the Kir6.1(V65M)
mutation may actually be benign. To address this, we system-
atically characterized the effects of valine-to-methionine and
valine-to-leucine substitutions in both Kir6.1 and Kir6.2 and
show that methionine substitution, but not leucine substitu-

tion, results in marked gain of function for either channel,
whether coexpressed with SUR1 or SUR2A regulatory subunits.
We show that substitution by methionine, but not by leucine,
results in reduced ATP sensitivity for both Kir6.2(V64M) and
Kir6.1(V65M) channels, and for Kir6.2(V64M), we show that
this results from an increase in the open state stability such that
the intrinsic open probability is higher. As a consequence, KATP

channels that include this mutation will exhibit increased activ-
ity under physiological regulation by intracellular nucleotides.
Similar increases in open state stability have previously been
reported for other slide helix mutations (e.g. Q52R (14)), reflect-
ing an important role of this domain in controlling channel
gating. Intriguingly, in light of recently reported structures of
the Kir6.2-SUR1 KATP complex (18, 19), the single other known
CS Kir6.1 mutation, Kir6.1(C176S), is located very close to
Val-65 in a cluster of hydrophobic residues (Fig. 1). Previous
analyses have demonstrated that the equivalent Kir6.2(C166S)
also increases intrinsic open state stability (29, 30). This raises
the possibility that both V65M and C176S mutations act to
destabilize the closed channel by disrupting this closed-state
hydrophobic cluster. In contrast, Männikkö et al. (20) reported
that the Kir6.2(V64L) mutation ameliorated the deleterious
effects of the nearby pathogenic F60Y mutation when ex-
pressed on the same subunit. Thus, it is also possible that V64M
may result in pathogenic reduction of ATP sensitivity by dis-
rupting the interaction that is normally present between these
two slide helix residues.

The potential utility of sulfonylurea drugs in the treatment of
CS remains to be tested clinically, but “second-generation” sul-
fonylureas, such as glibenclamide (glyburide), which demon-
strate moderate potency for inhibiting SUR2-containing KATP

channels, may offer promise for a specific therapy. However,

Figure 6. Gain of function in Kir6.2(V64M) results from decreased ATP sensitivity. Representative excised patch clamp recordings from COSm6 cells
coexpressing WT or mutant Kir6.2 subunits with SUR2A are shown. A, membrane potential was held at �50 mV, and currents were recorded continuously in
inside-out excised patches exposed to KINT in the absence or presence of 0.01, 0.1, or 5 mM Mg2�-free ATP. B, summary dose-response data (data points and
error bars represent mean and S.E.; 10 patches each) was fit using a four-parameter Hill equation to estimate the ATP concentration for half-maximal inhibition.
IC50 values were 32.2 � 6.6 �M (Hill coefficient, 2.2 � 0.2) for WT, 198 � 31.1 �M (Hill coefficient, 2.9 � 0.3) for Kir6.2(V64M), and 31.0 � 2.2 �M (Hill coefficient,
2.2 � 0.1) for Kir6.2(V64L) (* denotes statistical significance as determined by unpaired Student’s t tests; p � 0.05). In this and in representative current
recordings in subsequent figures, the dashed lines represent zero channel current.
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sulfonylurea sensitivity can be markedly decreased by KATP
mutations that increase the intrinsic open probability of chan-
nels (14 –16). Consistent with this, we show here that both the
Kir6.1(V65M) and Kir6.2(V64M) mutations essentially abolish
high-affinity glibenclamide sensitivity in both intact cells and

excised patches. This finding raises the possibility that, at least
for some CS mutations, sulfonylurea therapy may not be suc-
cessful and highlights the need for detailed pharmacogenomic
analyses of the effects of individual CS mutations on KATP
inhibitor sensitivity.

Figure 7. Kir6.2(V64M) increases channel open state stability. Representative KATP currents recorded from patches expressing WT (A) or V64M mutant Kir6.2
(B) with SUR2A following excision at the arrow and in the presence of 10 mM ATP, 1 mM ATP, or 5 �g/ml PIP2 as indicated are shown. C, relative Po determined
as a ratio of steady-state current in the patch upon excision in the absence of nucleotides to the maximum current measured following PIP2. Individual patch
data are represented by symbols (n � 8 –14); bars and error bars are the means and S.E. Relative Po � 0.59 � 0.07 (WT) and 1.05 � 0.07 (Kir6.2(V64M)) (* denotes
statistical significance as determined by unpaired Student’s t tests; p � 0.05).

Conserved gain-of-function Kir6.1 and Kir6.2 mutations
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Experimental procedures

Modeling of Kir6.1 tetrameric channels

Kir6.1 was modeled by homology to the recently published
Kir6.2 structures Protein Data Bank code 5TWV (19) and Pro-
tein Data Bank code 5WUA (18). Molecular dynamics (MD)
simulations were carried out using Gromacs software version
5.1.1 and the Amber 99 force field as described previously (31).
Mutations were introduced using Swiss-PdbViewer (32). Three
100-ns MD simulations were performed for WT Kir6.1 and V65L
and V65M mutants. All structures were embedded in a lipid
bilayer consisting of 588 1-palmitoyl-2-oleoylphosphatidylcholine
lipids using the g_membed tool (33) and solvated using the
extended simple point charge water model (34). K� and Cl� ions

were randomly placed within the solvent to neutralize the system
and to obtain an ion concentration of 150 mM. The root mean
square deviation of simulated protein structures all converged
to �3.5 Å for each structure at around 20 ns, indicating that the
simulated systems were stable and at equilibrium (Fig. 1D).

Mutagenesis and heterologous expression of KATP channels

Mutations were introduced in rat Kir6.1-pcDNA3.1 and
mouse Kir6.2-pcDNA3.1 using the QuikChange II site-directed
mutagenesis kit (Agilent Technologies) and confirmed by
direct sequencing of the coding region. For channel expression,
COSm6 cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 10% fetal bovine serum,

Figure 8. Kir6.2(V64M) decreases glibenclamide sensitivity in intact cells and excised patches. Cumulative 86Rb� efflux as a function of time was
measured from COSm6 cells incubated in metabolic inhibitors oligomycin and 2-deoxy-D-glucose in the presence or absence of 10 �M glibenclamide (Glib). A,
top left, cells were transfected either with GFP alone or with WT Kir6.2 and SUR2A. Top right, cells were transfected either with GFP alone or with Kir6.2(V64M)
and SUR2A. Bottom left, cells were transfected either with GFP alone or with a 1:1 mixture of Kir6.2 WT and Kir6.2(V64M) plus SUR2A. Data points and error bars
represent mean and S.E. of three experiments. B, percent inhibition of KATP flux at the 25-min time point from three independent experiments. C, representative
traces from inside-out patch clamp recordings from cells transfected with Kir6.2 WT and SUR2A (top trace) or Kir6.2(V64M) and SUR2A (bottom trace) at �50 mV
in the presence and absence of 3 mM ATP or increasing concentrations of glibenclamide as indicated. D, summary glibenclamide dose response from inside-out
patch recordings (data points and error bars represent mean and S.E. from three to five patches). Asterisks (*) denote statistical significance as determined by
Mann-Whitney U test (p � 0.05).
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105 units/liter penicillin, and 100 mg/liter streptomycin. At
60 –70% confluence, cells were transfected with the relevant
plasmids using FuGENE 6 transfection reagent (Promega). For
experiments with homomeric channels, cells were cotrans-
fected with pcDNA3.1-mKir6.2 or pcDNA3-Kir6.1 (0.6 �g) and
pECE-hamsterSUR1 cDNA or pCMV6-ratSUR2A (SUR2) (1
�g). For experiments using heteromeric channels, cells were
cotransfected with WT and mutant Kir6.x with WT SURx at
ratios of 0.3:0.3:1.0 (w/w/w). Cells transfected with GFP-
pcDNA3.1 served as controls. A small amount of GFP DNA was

coexpressed for identification of transfected cells in electro-
physiology experiments.

Macroscopic 86Rb� efflux assays

Transfected cells were incubated overnight at 37 °C in
DMEM containing 1 �Ci/ml 86RbCl (PerkinElmer Life Sci-
ences). Bathing medium was then replaced by room tempera-
ture Ringers solution (118 mM NaCl, 10 mM HEPES, 25 mM

NaHCO3, 4.7 mM KCl, 1.2 mM KH2PO4, 2.5 mM CaCl2, 1.2 mM

MgSO4, adjusted to pH 7.4 with NaOH) immediately before

Figure 9. The Kir6.1(V65M) mutation decreases glibenclamide sensitivity in heterotetrameric channels expressed in intact cells and excised patches.
A, representative inside-out patch current recordings from COSm6 cells transfected with a 1:1 mixture of Kir6.2 WT and either Kir6.1 WT (top) or Kir6.1(V65M)
(bottom) and SUR2A. B, summary dose-response data (mean � S.E. from three patches) was fit using a four-parameter Hill equation to estimate the ATP
concentration for half-maximal inhibition.The IC50 for Kir6.2 WT/Kir6.1 WT-containing channels was 3.2 � 1.2 �M (Hill coefficient 0.9 � 0.1; n � 3) compared
with 15.1 � 2.6 �M (Hill coefficient 1.2 � 0.1; n � 3) for Kir6.2 WT/Kir6.1(V65M)-containing channels (* denotes statistical significance as determined by
Mann-Whitney U tests; p � 0.05). C, cumulative 86Rb� efflux as a function of time was measured from COSm6 cells incubated in metabolic inhibitors oligomycin
and 2-deoxy-D-glucose in the presence or absence of 10 �M glibenclamide (Glib). Left, cells were transfected either with GFP alone or with a 1:1 ratio of Kir6.2
WT with Kir6.1 WT and SUR2A. Right, cells were transfected either with GFP alone or with a 1:1 ratio of Kir6.2 WT with Kir6.1(V65M) and SUR2A. Data points and
error bars represent mean and S.E. of three experiments. D, the inhibition of KATP flux by 10 �M glibenclamide (calculated as in Fig. 8). Kir6.2 WT/Kir6.1
WT-containing channels were inhibited by 46.1 � 2.7% compared with 31.4 � 4.0% for Kir6.2 WT/Kir6.1(V65M)-containing channels. E, representative traces
from inside-out patch clamp recordings from cells transfected with Kir6.2 WT/Kir6.1 WT and SUR2A (top trace) or Kir6.2 WT/Kir6.1(V65M) and SUR2A (bottom
trace). Currents were recorded at �50 mV in the presence and absence of 3 mM ATP or increasing concentrations of glibenclamide as indicated. F, summary
glibenclamide dose response from inside-out patch clamp recordings (data points and error bars represent mean and S.E. from three patches). Asterisks (*)
denote statistical significance as determined by Mann-Whitney U test (p � 0.05).
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two 1-min washes in assay medium. 86Rb efflux was then
assessed in 1) the absence (basal) or 2) presence of 2.5 mg/ml
oligomycin and 1 mmol/liter 2-deoxy-D-glucose (metabolic
inhibition; applied during two 1-min washes prior to assay) or
3) the presence of SUR1- or SUR2-specific K� channel opener,
diazoxide or pinacidil, respectively, at 100 �M (applied during
two 1-min washes prior to assay). At selected time points, the
solution was collected and replaced with fresh solution. Upon
completion of the assay, cells were lysed with 2% SDS, and
radioactivity in these samples was measured by liquid scintilla-
tion. A nonspecific efflux pathway was assumed to be present in
all experiments. In metabolic inhibition in particular, both the
nonspecific efflux rate and KATP-specific efflux rates decreased
with time. Data are shown as mean cumulative Rb� efflux (�S.E.)
relative to total initial Rb� content. Data were tested for statistical
significance using the Student’s t test where normal distribution of
data could be confirmed or by the non-parametric Mann-Whitney
U test where normal distribution could not be confirmed; a p value
�0.05 was considered significant for both tests.

Excised patch clamp

After 24 – 48 h, transfected fluorescent cells were selected for
analysis by excised patch clamp experiments using a perfusion
chamber that allows for the rapid switching of solutions (35).
The bath and pipette solutions (KINT) contained 140 mM KCl,
10 mM HEPES, 1 mM EGTA, pH 7.4 with KOH. KATP currents
were recorded from inside-out patches at �50 mV. Current
levels in solutions of varying nucleotide or glibenclamide con-
centrations were normalized to the basal current in the absence
of inhibitors, and dose-response data were fit with a four-pa-
rameter Hill equation.

Normalized current � Imin � �Imax � Imin	/�1 � �
X�/IC50	
H	

(Eq. 1)

where the current in KINT � Imax, Imin is the minimum current
observed in high ATP, [X] refers to the concentration of ATP or
glibenclamide, IC50 is the concentration of half-maximal inhi-
bition, and H denotes the Hill coefficient.

For experiments assessing PIP2 activation, an ammonium
salt of L-�-phosphatidylinositol 4,5-bisphosphate from porcine
brain (Avanti Polar Lipids) was dissolved in KINT to prepare a
5 �g/ml working solution. For each membrane patch, Po was
estimated by dividing the steady-state current in zero ATP by
the maximum steady-state current after exposure to PIP2 (14).
Data were tested for statistical significance using Student’s t test
where normal distribution of data could be confirmed or by the
non-parametric Mann-Whitney U test where normal distribution
could not be confirmed. A p value �0.05 was considered signifi-
cant for both tests. Experiments were performed at 20–22 °C.
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