351 research outputs found
Magnetic Impurities in the Pnictide Superconductor BaKFeAs
NMR measurements have been performed on single crystals of
BaKFeAs (x = 0, 0.45) and CaFeAs grown from Sn
flux. The Ba-based pnictide crystals contain significant amounts of Sn in their
structure, %, giving rise to magnetic impurity effects evident in the
NMR spectrum and in the magnetization. Our experiments show that the large
impurity magnetization is broadly distributed on a microscopic scale,
generating substantial magnetic field gradients. There is a concomitant 20%
reduction in the transition temperature which is most likely due to magnetic
electron scattering. We suggest that the relative robustness of
superconductivity () in the presence of severe magnetic inhomogeneity
might be accounted for by strong spatial correlations between impurities on the
coherence length scale.Comment: 14 pages, 6 figures (submitted to New Journal of Physics
Brazilin Isolated from Caesalpinia sappan Suppresses Nuclear Envelope Reassembly by Inhibiting Barrier-to-Autointegration Factor Phosphorylation
To date, many anticancer drugs have been developed by directly or indirectly targeting microtubules, which are involved in cell division. Although this approach has yielded many anticancer drugs, these drugs produce undesirable side effects. An alternative strategy is needed, and targeting mitotic exit may be one alternative approach. Localization of phosphorylated barrier-to-autointegration factor (BAF) to the chromosomal core region is essential for nuclear envelope compartment relocalization. In this study, we isolated brazilin from Caesalpinia sappan Leguminosae and demonstrated that it inhibited BAF phosphorylation in vitro and in vivo. Moreover, we demonstrated direct binding between brazilin and BAF. The inhibition of BAF phosphorylation induced abnormal nuclear envelope reassembly and cell death, indicating that perturbation of nuclear envelope reassembly could be a novel approach to anticancer therapy. We propose that brazilin isolated from C. sappan may be a new anticancer drug candidate that induces cell death by inhibiting vaccinia-related kinase 1-mediated BAF phosphorylation.X1153Ysciescopu
Real-Time Ventilation Measurements from Mechanically Ventilated Livestock Buildings for Emission Rate Estimations
A six-state USDA-IFAFS funded research project (Aerial Pollutant Emissions from Confined Animal Buildings, APECAB) was conducted with the purpose of determining hydrogen sulfide, ammonia, PM10, and odor emission rates from selected swine and poultry housing systems. An important aspect of emission studies is to be able to measure the mass flow rate of air through the housing system. For this research project, the decision was made to study only fan ventilated buildings due to the difficulty in estimating mass flow rates through naturally ventilated buildings. This paper highlights the various techniques used throughout the study to determine mass flow rate through fan ventilated swine and poultry housing systems
AFe2As2 (A = Ca, Sr, Ba, Eu) and SrFe_(2-x)TM_(x)As2 (TM = Mn, Co, Ni): crystal structure, charge doping, magnetism and superconductivity
The electronic structure and physical properties of the pnictide compound
families OFeAs ( = La, Ce, Pr, Nd, Sm), FeAs ( = Ca,
Sr, Ba, Eu), LiFeAs and FeSe are quite similar. Here, we focus on the members
of the FeAs family whose sample composition, quality and single
crystal growth are better controllable compared to the other systems. Using
first principles band structure calculations we focus on understanding the
relationship between the crystal structure, charge doping and magnetism in
FeAs systems. We will elaborate on the tetragonal to
orthorhombic structural distortion along with the associated magnetic order and
anisotropy, influence of doping on the site as well as on the Fe site, and
the changes in the electronic structure as a function of pressure.
Experimentally, we investigate the substitution of Fe in
SrFeAs by other 3 transition metals, = Mn, Co, Ni.
In contrast to a partial substitution of Fe by Co or Ni (electron doping) a
corresponding Mn partial substitution does not lead to the supression of the
antiferromagnetic order or the appearance of superconductivity. Most calculated
properties agree well with the measured properties, but several of them are
sensitive to the As position. For a microscopic understanding of the
electronic structure of this new family of superconductors this structural
feature related to the Fe-As interplay is crucial, but its correct ab initio
treatment still remains an open question.Comment: 27 pages, single colum
Bio-nanotechnology application in wastewater treatment
The nanoparticles have received high interest in the field of medicine and water purification, however, the nanomaterials produced by chemical and physical methods are considered hazardous, expensive, and leave behind harmful substances to the environment. This chapter aimed to focus on green-synthesized nanoparticles and their medical applications. Moreover, the chapter highlighted the applicability of the metallic nanoparticles (MNPs) in the inactivation of microbial cells due to their high surface and small particle size. Modifying nanomaterials produced by green-methods is safe, inexpensive, and easy. Therefore, the control and modification of nanoparticles and their properties were also discussed
The SERRATE protein is involved in alternative splicing in <em>Arabidopsis thaliana</em>
Howalternative splicing (AS) is regulated in plants has not yet been elucidated. Previously, we have shown that the nuclear cap-binding protein complex (AtCBC) is involved in AS in Arabidopsis thaliana. Here we show that both subunits of AtCBC (AtCBP20 and AtCBP80) interact with SERRATE (AtSE), a protein involved in the microRNA biogenesis pathway. Moreover, using a high-resolution reverse transcript-ase-polymerase chain reaction AS system we have found that AtSE influences AS in a similar way to the cap-binding complex (CBC), preferentially affecting selection of 50 splice site of first introns. The AtSE protein acts in cooperation with AtCBC: many changes observed in the mutant lacking the correct SERRATE activity were common to those observed in the cbp mutants. Interestingly, significant changes in AS of some genes were also observed in other mutants of plant microRNA biogenesis pathway, hyl1-2 and dcl1-7, but a majority of them did not cor-respond to the changes observed in the se-1mutant. Thus, the role of SERRATE in AS regulation is distinct from that of HYL1andDCL1, and is similar to the regu-lation of AS in which CBC is involved
Involvement of the nuclear cap-binding protein complex in alternative splicing in Arabidopsis thaliana
The nuclear cap-binding protein complex (CBC) participates in 5′ splice site selection of introns that are proximal to the mRNA cap. However, it is not known whether CBC has a role in alternative splicing. Using an RT–PCR alternative splicing panel, we analysed 435 alternative splicing events in Arabidopsis thaliana genes, encoding mainly transcription factors, splicing factors and stress-related proteins. Splicing profiles were determined in wild type plants, the cbp20 and cbp80(abh1) single mutants and the cbp20/80 double mutant. The alternative splicing events included alternative 5′ and 3′ splice site selection, exon skipping and intron retention. Significant changes in the ratios of alternative splicing isoforms were found in 101 genes. Of these, 41% were common to all three CBC mutants and 15% were observed only in the double mutant. The cbp80(abh1) and cbp20/80 mutants had many more changes in alternative splicing in common than did cbp20 and cbp20/80 suggesting that CBP80 plays a more significant role in alternative splicing than CBP20, probably being a platform for interactions with other splicing factors. Cap-binding proteins and the CBC are therefore directly involved in alternative splicing of some Arabidopsis genes and in most cases influenced alternative splicing of the first intron, particularly at the 5′ splice site
Principles of cartilage tissue engineering in TMJ reconstruction
Diseases and defects of the temporomandibular joint (TMJ), compromising the cartilaginous layer of the condyle, impose a significant treatment challenge. Different regeneration approaches, especially surgical interventions at the TMJ's cartilage surface, are established treatment methods in maxillofacial surgery but fail to induce a regeneration ad integrum. Cartilage tissue engineering, in contrast, is a newly introduced treatment option in cartilage reconstruction strategies aimed to heal cartilaginous defects. Because cartilage has a limited capacity for intrinsic repair, and even minor lesions or injuries may lead to progressive damage, biological oriented approaches have gained special interest in cartilage therapy. Cell based cartilage regeneration is suggested to improve cartilage repair or reconstruction therapies. Autologous cell implantation, for example, is the first step as a clinically used cell based regeneration option. More advanced or complex therapeutical options (extracorporeal cartilage engineering, genetic engineering, both under evaluation in pre-clinical investigations) have not reached the level of clinical trials but may be approached in the near future. In order to understand cartilage tissue engineering as a new treatment option, an overview of the biological, engineering, and clinical challenges as well as the inherent constraints of the different treatment modalities are given in this paper
- …