56 research outputs found
Reactive oxygen species regulate context-dependent inhibition of NFAT5 target genes
The activation of nuclear factor of activated T cells 5(NFAT5), a well-known osmoprotective factor, can be induced by isotonic stimuli, such as activated Toll-like receptors (TLRs). It is unclear, however, how NFAT5 discriminates between isotonic and hypertonic stimuli. In this study we identified a novel context-dependent suppression of NFAT5 target gene expression in RAW 264.7 macrophages stimulated with lipopolysaccharide (LPS) or a high salt (NaCl) concentration. Although LPS and NaCl both used NFAT5 as a core transcription factor, these stimuli mutually inhibited distinct sets of NFAT5 targets within the cells. Although reactive oxygen species (ROS) are essential for this inhibition, the source of ROS differed depending on the context: mitochondria for high salt and xanthine oxidase for TLRs. Specifically, the high salt-induced suppression of interleukin-6 (IL-6) production was mediated through the ROS-induced inhibition of NFAT5 binding to the IL-6 promoter. The context-dependent inhibition of NFAT5 target gene expression was also confirmed in mouse spleen and kidney tissues that were cotreated with LPS and high salt. Taken together, our data suggest that ROS function as molecular sensors to discriminate between TLR ligation and osmotic stimuli in RAW 264.7 macrophages, directing NFAT5 activity toward proinflammatory or hypertonic responses in a context-dependent manner.open3
Early Evolution of Conserved Regulatory Sequences Associated with Development in Vertebrates
Comparisons between diverse vertebrate genomes have uncovered thousands of highly conserved non-coding sequences, an increasing number of which have been shown to function as enhancers during early development. Despite their extreme conservation over 500 million years from humans to cartilaginous fish, these elements appear to be largely absent in invertebrates, and, to date, there has been little understanding of their mode of action or the evolutionary processes that have modelled them. We have now exploited emerging genomic sequence data for the sea lamprey, Petromyzon marinus, to explore the depth of conservation of this type of element in the earliest diverging extant vertebrate lineage, the jawless fish (agnathans). We searched for conserved non-coding elements (CNEs) at 13 human gene loci and identified lamprey elements associated with all but two of these gene regions. Although markedly shorter and less well conserved than within jawed vertebrates, identified lamprey CNEs are able to drive specific patterns of expression in zebrafish embryos, which are almost identical to those driven by the equivalent human elements. These CNEs are therefore a unique and defining characteristic of all vertebrates. Furthermore, alignment of lamprey and other vertebrate CNEs should permit the identification of persistent sequence signatures that are responsible for common patterns of expression and contribute to the elucidation of the regulatory language in CNEs. Identifying the core regulatory code for development, common to all vertebrates, provides a foundation upon which regulatory networks can be constructed and might also illuminate how large conserved regulatory sequence blocks evolve and become fixed in genomic DNA
The genomic basis of adaptive evolution in threespine sticklebacks
Marine stickleback fish have colonized and adapted to thousands of streams and lakes formed since the last ice age, providing an exceptional opportunity to characterize genomic mechanisms underlying repeated ecological adaptation in nature. Here we develop a high-quality reference genome assembly for threespine sticklebacks. By sequencing the genomes of twenty additional individuals from a global set of marine and freshwater populations, we identify a genome-wide set of loci that are consistently associated with marine–freshwater divergence. Our results indicate that reuse of globally shared standing genetic variation, including chromosomal inversions, has an important role in repeated evolution of distinct marine and freshwater sticklebacks, and in the maintenance of divergent ecotypes during early stages of reproductive isolation. Both coding and regulatory changes occur in the set of loci underlying marine–freshwater evolution, but regulatory changes appear to predominate in this well known example of repeated adaptive evolution in nature.National Human Genome Research Institute (U.S.)National Human Genome Research Institute (U.S.) (NHGRI CEGS Grant P50-HG002568
Strategies in 'snake venomics' aiming at an integrative view of compositional, functional, and immunological characteristics of venoms
This work offers a general overview on the evolving strategies for the proteomic analysis of snake venoms, and
discusses how these may be combined through diverse experimental approaches with the goal of achieving a
more comprehensive knowledge on the compositional, toxic, and immunological characteristics of venoms.
Some recent developments in this field are summarized, highlighting how strategies have evolved from the mere
cataloguing of venom components (proteomics/venomics), to a broader exploration of their immunological
(antivenomics) and functional (toxicovenomics) characteristics. Altogether, the combination of these complementary
strategies is helping to build a wider, more integrative view of the life-threatening protein cocktails produced by
venomous snakes, responsible for thousands of deaths every year.Ministerio de Economía y Competitividad/[BFU2013-42833-P]//EspañaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Instituto Clodomiro Picado (ICP
Mars Science Laboratory
International audienceMars Science Laboratory is a large instrumented vehicle (rover) built by NASA that landed on Mars in August 2012 (launched November 2011) and will operate for more than 1 Martian year (i.e., 2 Earth years). This rover, also called Curiosity, characterizes and interprets the geology of the landing region at all scales, assesses the biological potential of encountered targets, investigates planetary processes of relevance to past habitability, and characterizes radiation arriving at Mars’ surface. Aboard MSL, an analytical laboratory is especially devoted to atmospheric analysis and search for organics in the ground
- …