306 research outputs found

    Hydro-thermal flows in a rough fracture

    Get PDF
    see Abstract Volum

    Structure and dynamics of Oxide Melts and Glasses : a view from multinuclear and high temperature NMR

    Get PDF
    Solid State Nuclear Magnetic Resonance (NMR) experiments allow characterizing the local structure and dynamics of oxide glasses and melts. Thanks to the development of new experiments, it now becomes possible to evidence not only the details of the coordination state of the network formers of glasses but also to characterize the nature of polyatomic molecular motifs extending over several chemical bonds. We present results involving 31P homonuclear experiments that allow description of groups of up to three phosphate units and 27Al/17O heteronuclear that allows evidencing μ3 oxygen bridges in aluminate glasses and rediscussion of the structure of high temperature melts.Comment: Journal of Non-Crystalline Solids (2007) in press; Also available online at: http://crmht.cnrs-orleans.fr/Intranet/Publications/?id=207

    Laser-initiated primary and secondary nuclear reactions in Boron-Nitride

    Get PDF
    International audienceNuclear reactions initiated by laser-accelerated particle beams are a promising new approach to many applications, from medical radioisotopes to aneutronic energy production. We present results demonstrating the occurrence of secondary nuclear reactions, initiated by the primary nuclear reaction products, using multicomponent targets composed of either natural boron (B) or natural boron nitride (BN). The primary proton-boron reaction (p + 11B → 3 α + 8.7 MeV), is one of the most attractive aneutronic fusion reaction. We report radioactive decay signatures in targets irradiated at the Elfie laser facility by laser-accelerated particle beams which we interpret as due to secondary reactions induced by alpha (α) particles produced in the primary reactions. Use of a second nanosecond laser beam, adequately synchronized with the short laser pulse to produce a plasma target, further enhanced the reaction rates. High rates and chains of reactions are essential for most applications

    Metabolomic Characterization of Ovarian Epithelial Carcinomas by HRMAS-NMR Spectroscopy

    Get PDF
    Objectives. The objectives of the present study are to determine if a metabolomic study by HRMAS-NMR can (i) discriminate between different histological types of epithelial ovarian carcinomas and healthy ovarian tissue, (ii) generate statistical models capable of classifying borderline tumors and (iii) establish a potential relationship with patient's survival or response to chemotherapy. Methods. 36 human epithelial ovarian tumor biopsies and 3 healthy ovarian tissues were studied using 1H HRMAS NMR spectroscopy and multivariate statistical analysis. Results. The results presented in this study demonstrate that the three histological types of epithelial ovarian carcinomas present an effective metabolic pattern difference. Furthermore, a metabolic signature specific of serous (N-acetyl-aspartate) and mucinous (N-acetyl-lysine) carcinomas was found. The statistical models generated in this study are able to predict borderline tumors characterized by an intermediate metabolic pattern similar to the normal ovarian tissue. Finally and importantly, the statistical model of serous carcinomas provided good predictions of both patient's survival rates and the patient's response to chemotherapy. Conclusions. Despite the small number of samples used in this study, the results indicate that metabolomic analysis of intact tissues by HRMAS-NMR is a promising technique which might be applicable to the therapeutic management of patients

    Tailoring microstructure and phase segregation for low friction carbon-based nanocomposite coatings

    No full text
    Friction has a direct relation with the energy efficiency and environmental cleanliness in all moving mechanical systems. To develop low friction coatings is extremely beneficial for preserving not only our limited energy resources but also the earth’s environment. This study proposes a new design for low friction carbon-based nanocomposite coatings by tailoring the microstructure and phase segregation,and thereby it contributes to better controlling the mechanical and tribological properties. Experimental findings and theoretical calculations reveal that high-hardness (18.2 GPa), high-adhesion strength (28 N) as well as low-internal stress (-0.8 GPa) can be achieved by a nanocrystallite/amorphous microstructure architecture for the nc-WC/a-C(Al) carbon-based nanocomposite coating;in particular low friction (~0.05) can be acquired by creating a strong thermodynamic driving force to promote phase segregation of graphitic carbon from the a-C structure so as to form a low shear strength graphitic tribo-layer on the friction contact surfaces. This design concept is general and has been successfully employed to fabricate a wide class of low friction carbon-based nanocomposite coating

    Circulating adrenomedullin estimates survival and reversibility of organ failure in sepsis: the prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock-1 (AdrenOSS-1) study

    Get PDF
    Background: Adrenomedullin (ADM) regulates vascular tone and endothelial permeability during sepsis. Levels of circulating biologically active ADM (bio-ADM) show an inverse relationship with blood pressure and a direct relationship with vasopressor requirement. In the present prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock 1 (, AdrenOSS-1) study, we assessed relationships between circulating bio-ADM during the initial intensive care unit (ICU) stay and short-term outcome in order to eventually design a biomarker-guided randomized controlled trial. Methods: AdrenOSS-1 was a prospective observational multinational study. The primary outcome was 28-day mortality. Secondary outcomes included organ failure as defined by Sequential Organ Failure Assessment (SOFA) score, organ support with focus on vasopressor/inotropic use, and need for renal replacement therapy. AdrenOSS-1 included 583 patients admitted to the ICU with sepsis or septic shock. Results: Circulating bio-ADM levels were measured upon admission and at day 2. Median bio-ADM concentration upon admission was 80.5 pg/ml [IQR 41.5-148.1 pg/ml]. Initial SOFA score was 7 [IQR 5-10], and 28-day mortality was 22%. We found marked associations between bio-ADM upon admission and 28-day mortality (unadjusted standardized HR 2.3 [CI 1.9-2.9]; adjusted HR 1.6 [CI 1.1-2.5]) and between bio-ADM levels and SOFA score (p < 0.0001). Need of vasopressor/inotrope, renal replacement therapy, and positive fluid balance were more prevalent in patients with a bio-ADM > 70 pg/ml upon admission than in those with bio-ADM ≤ 70 pg/ml. In patients with bio-ADM > 70 pg/ml upon admission, decrease in bio-ADM below 70 pg/ml at day 2 was associated with recovery of organ function at day 7 and better 28-day outcome (9.5% mortality). By contrast, persistently elevated bio-ADM at day 2 was associated with prolonged organ dysfunction and high 28-day mortality (38.1% mortality, HR 4.9, 95% CI 2.5-9.8). Conclusions: AdrenOSS-1 shows that early levels and rapid changes in bio-ADM estimate short-term outcome in sepsis and septic shock. These data are the backbone of the design of the biomarker-guided AdrenOSS-2 trial. Trial registration: ClinicalTrials.gov, NCT02393781. Registered on March 19, 2015

    Incorporation and phase separation of Cl in alkaline earth aluminosilicate glasses

    Get PDF
    Pyrochemical reprocessing of spent nuclear fuels may lead to the generation of chloride containing wastes. 36Cl wastes may also arise from the treatment of irradiated graphite. Such wastes will have limited solubility in the borosilicates currently used for waste vitrification. Despite requiring higher processing temperatures aluminosilicate glasses show promise for this application. In a series of alkaline earth aluminosilicate glasses we demonstrate that chloride solubility is related to the alkaline earth species as follows Sr > Sr+Ba > Ba > Ca > Mg, with the strontium aluminosilicate glass accommodating up to 5.92 at% Cl. Typical chloride retention rates are ~80% of the batched chloride content at 1400ºC. It has also been observed that, when Cl is present in the glass in excess, phase separation firstly occurs as formation of non-Cl crystals (mainly alkaline earth aluminosilicates, with a minority of aluminates); a segregated chloride layer is only formed at higher chlorine loadings. This indicates that chlorine solubility in glass is not only controlled by the capacity of glass network to accommodate Cl– but also by the stability of glass network after Cl– incorporation. In addition, increased incorporation of Cl– in glass results in steadily decreased glass densities and glass transition temperatures
    corecore