1,307 research outputs found
Adaptive Lévy processes and area-restricted search in human foraging
A considerable amount of research has claimed that animals’ foraging behaviors display movement lengths with power-law distributed tails, characteristic of Lévy flights and Lévy walks. Though these claims have recently come into question, the proposal that many animals forage using Lévy processes nonetheless remains. A Lévy process does not consider when or where resources are encountered, and samples movement lengths independently of past experience. However, Lévy processes too have come into question based on the observation that in patchy resource environments resource-sensitive foraging strategies, like area-restricted search, perform better than Lévy flights yet can still generate heavy-tailed distributions of movement lengths. To investigate these questions further, we tracked humans as they searched for hidden resources in an open-field virtual environment, with either patchy or dispersed resource distributions. Supporting previous research, for both conditions logarithmic binning methods were consistent with Lévy flights and rank-frequency methods–comparing alternative distributions using maximum likelihood methods–showed the strongest support for bounded power-law distributions (truncated Lévy flights). However, goodness-of-fit tests found that even bounded power-law distributions only accurately characterized movement behavior for 4 (out of 32) participants. Moreover, paths in the patchy environment (but not the dispersed environment) showed a transition to intensive search following resource encounters, characteristic of area-restricted search. Transferring paths between environments revealed that paths generated in the patchy environment were adapted to that environment. Our results suggest that though power-law distributions do not accurately reflect human search, Lévy processes may still describe movement in dispersed environments, but not in patchy environments–where search was area-restricted. Furthermore, our results indicate that search strategies cannot be inferred without knowing how organisms respond to resources–as both patched and dispersed conditions led to similar Lévy-like movement distributions
Constructing a Stochastic Model of Bumblebee Flights from Experimental Data
PMCID: PMC3592844This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Improved Success of Sparse Matrix Protein Crystallization Screening with Heterogeneous Nucleating Agents
Crystallization is a major bottleneck in the process of macromolecular structure determination by X-ray crystallography. Successful crystallization requires the formation of nuclei and their subsequent growth to crystals of suitable size. Crystal growth generally occurs spontaneously in a supersaturated solution as a result of homogenous nucleation. However, in a typical sparse matrix screening experiment, precipitant and protein concentration are not sampled extensively, and supersaturation conditions suitable for nucleation are often missed
Split tendon transfers for the correction of spastic varus foot deformity: a case series study
<p>Abstract</p> <p>Background</p> <p>Overactivity of anterior and/or posterior tibial tendon may be a causative factor of spastic varus foot deformity. The prevalence of their dysfunction has been reported with not well defined results. Although gait analysis and dynamic electromyography provide useful information for the assessment of the patients, they are not available in every hospital. The purpose of the current study is to identify the causative muscle producing the deformity and apply the most suitable technique for its correction.</p> <p>Methods</p> <p>We retrospectively evaluated 48 consecutive ambulant patients (52 feet) with spastic paralysis due to cerebral palsy. The average age at the time of the operation was 12,4 yrs (9-18) and the mean follow-up 7,8 yrs (4-14). Eigtheen feet presented equinus hind foot deformity due to gastrocnemius and soleus shortening. According to the deformity, the feet were divided in two groups (Group I with forefoot and midfoot inversion and Group II with hindfoot varus). The deformities were flexible in all cases in both groups. Split anterior tibial tendon transfer (SPLATT) was performed in Group I (11 feet), while split posterior tibial tendon transfer (SPOTT) was performed in Group II (38 feet). In 3 feet both procedures were performed. Achilles tendon sliding lengthening (Hoke procedure) was done in 18 feet either preoperatively or concomitantly with the index procedure.</p> <p>Results</p> <p>The results in Group I, were rated according to Hoffer's clinical criteria as excellent in 8 feet and satisfactory in 3, while in Group II according to Kling's clinical criteria were rated as excellent in 20 feet, good in 14 and poor in 4. The feet with poor results presented residual varus deformity due to intraoperative technical errors.</p> <p>Conclusion</p> <p>Overactivity of the anterior tibial tendon produces inversion most prominent in the forefoot and midfoot and similarly overactivity of the posterior tibial tendon produces hindfoot varus. The deformity can be clinically unidentifiable in some cases when Achilles shortening co-exists producing foot equinus. By identifying the muscle causing the deformity and performing the appropriate technique, very satisfying results were achieved in the majority of our cases. In three feet both muscles contributed to a combined deformity and simultaneous SPLATT and SPOTT were considered necessary. For complex foot deformities where the component of cavus co-exists, supplementary procedures are required along with the index operation to obtain the best result.</p
MultiMetEval: comparative and multi-objective analysis of genome-scale metabolic models
Comparative metabolic modelling is emerging as a novel field, supported by the development of reliable and standardized approaches for constructing genome-scale metabolic models in high throughput. New software solutions are needed to allow efficient comparative analysis of multiple models in the context of multiple cellular objectives. Here, we present the user-friendly software framework Multi-Metabolic Evaluator (MultiMetEval), built upon SurreyFBA, which allows the user to compose collections of metabolic models that together can be subjected to flux balance analysis. Additionally, MultiMetEval implements functionalities for multi-objective analysis by calculating the Pareto front between two cellular objectives. Using a previously generated dataset of 38 actinobacterial genome-scale metabolic models, we show how these approaches can lead to exciting novel insights. Firstly, after incorporating several pathways for the biosynthesis of natural products into each of these models, comparative flux balance analysis predicted that species like Streptomyces that harbour the highest diversity of secondary metabolite biosynthetic gene clusters in their genomes do not necessarily have the metabolic network topology most suitable for compound overproduction. Secondly, multi-objective analysis of biomass production and natural product biosynthesis in these actinobacteria shows that the well-studied occurrence of discrete metabolic switches during the change of cellular objectives is inherent to their metabolic network architecture. Comparative and multi-objective modelling can lead to insights that could not be obtained by normal flux balance analyses. MultiMetEval provides a powerful platform that makes these analyses straightforward for biologists. Sources and binaries of MultiMetEval are freely available from https://github.com/PiotrZakrzewski/MetEval/downloads
Lévy patterns in seabirds are multifaceted describing both spatial and temporal patterning
BACKGROUND: The flight patterns of albatrosses and shearwaters have become a touchstone for much of Lévy flight research, spawning an extensive field of enquiry. There is now compelling evidence that the flight patterns of these seabirds would have been appreciated by Paul Lévy, the mathematician after whom Lévy flights are named. Here we show that Lévy patterns (here taken to mean spatial or temporal patterns characterized by distributions with power-law tails) are, in fact, multifaceted in shearwaters being evident in both spatial and temporal patterns of activity. RESULTS: We tested for Lévy patterns in the at-sea behaviours of two species of shearwater breeding in the North Atlantic Ocean (Calonectris borealis) and the Mediterranean sea (C. diomedea) during their incubating and chick-provisioning periods. We found that distributions of flight durations, on/in water durations and inter-dive time-intervals have power-law tails and so bear the hallmarks of Lévy patterns. CONCLUSIONS: The occurrence of these statistical laws is remarkable given that bird behaviours are strongly shaped by an individual’s motivational state and by complex environmental interactions. Our observations could take Lévy patterns as models of animal behaviour to a new level by going beyond the characterisation of spatial movements to characterise how different behaviours are interwoven throughout daily animal life
A Quantitative Analysis of Flight Feather Replacement in the Moustached Tree Swift Hemiprocne mystacea, a Tropical Aerial Forager
The functional life span of feathers is always much less than the potential life span of birds, so feathers must be renewed regularly. But feather renewal entails important energetic, time and performance costs that must be integrated into the annual cycle. Across species the time required to replace flight feather increases disproportionately with body size, resulting in complex, multiple waves of feather replacement in the primaries of many large birds. We describe the rules of flight feather replacement for Hemiprocne mystacea, a small, 60g tree swift from the New Guinea region. This species breeds and molts in all months of the year, and flight feather molt occurs during breeding in some individuals. H. mystacea is one to be the smallest species for which stepwise replacement of the primaries and secondaries has been documented; yet, primary replacement is extremely slow in this aerial forager, requiring more than 300 days if molt is not interrupted. We used growth bands to show that primaries grow at an average rate of 2.86 mm/d. The 10 primaries are a single molt series, while the 11 secondaries and five rectrices are each broken into two molt series. In large birds stepwise replacement of the primaries serves to increase the rate of primary replacement while minimizing gaps in the wing. But stepwise replacement of the wing quills in H. mystacea proceeds so slowly that it may be a consequence of the ontogeny of stepwise molting, rather than an adaptation, because the average number of growing primaries is probably lower than 1.14 feathers per wing
Pharmacological Analysis of Ionotropic Glutamate Receptor Function in Neuronal Circuits of the Zebrafish Olfactory Bulb
Although synaptic functions of ionotropic glutamate receptors in the olfactory bulb have been studied in vitro, their roles in pattern processing in the intact system remain controversial. We therefore examined the functions of ionotropic glutamate receptors during odor processing in the intact olfactory bulb of zebrafish using pharmacological manipulations. Odor responses of mitral cells and interneurons were recorded by electrophysiology and 2-photon Ca2+ imaging. The combined blockade of AMPA/kainate and NMDA receptors abolished odor-evoked excitation of mitral cells. The blockade of AMPA/kainate receptors alone, in contrast, increased the mean response of mitral cells and decreased the mean response of interneurons. The blockade of NMDA receptors caused little or no change in the mean responses of mitral cells and interneurons. However, antagonists of both receptor types had diverse effects on the magnitude and time course of individual mitral cell and interneuron responses and, thus, changed spatio-temporal activity patterns across neuronal populations. Oscillatory synchronization was abolished or reduced by AMPA/kainate and NMDA receptor antagonists, respectively. These results indicate that (1) interneuron responses depend mainly on AMPA/kainate receptor input during an odor response, (2) interactions among mitral cells and interneurons regulate the total olfactory bulb output activity, (3) AMPA/kainate receptors participate in the synchronization of odor-dependent neuronal ensembles, and (4) ionotropic glutamate receptor-containing synaptic circuits shape odor-specific patterns of olfactory bulb output activity. These mechanisms are likely to be important for the processing of odor-encoding activity patterns in the olfactory bulb
Socio-economic variation in CT scanning in Northern England, 1990-2002
<p>Abstract</p> <p>Background</p> <p>Socio-economic status is known to influence health throughout life. In childhood, studies have shown increased injury rates in more deprived settings. Socio-economic status may therefore be related to rates of certain medical procedures, such as computed tomography (CT) scans. This study aimed to assess socio-economic variation among young people having CT scans in Northern England between 1990 and 2002 inclusive.</p> <p>Methods</p> <p>Electronic data were obtained from Radiology Information Systems of all nine National Health Service hospital Trusts in the region. CT scan data, including sex, date of scan, age at scan, number and type of scans were assessed in relation to quintiles of Townsend deprivation scores, obtained from linkage of postcodes with census data, using χ<sup>2 </sup>tests and Spearman rank correlations.</p> <p>Results</p> <p>During the study period, 39,676 scans were recorded on 21,089 patients, with 38,007 scans and 19,485 patients (11344 male and 8132 female) linkable to Townsend scores. The overall distributions of both scans and patients by quintile of Townsend deprivation scores were significantly different to the distributions of Townsend scores from the census wards included in the study (p < 0.0001). There was a significant association between type of scan and deprivation quintile (p < 0.0001), primarily due to the higher proportions of head scans in the three most deprived quintiles, and slightly higher proportions of chest scans and abdomen and pelvis scans in the least deprived groups. There was also a significant association (p < 0.0001) between the patient's age at the time of the CT scan and Townsend deprivation quintiles, with slightly increasing proportions of younger children with increasing deprivation. A similar association with age (p < 0.0001) was seen when restricting the data to include only the first scan of each patient. The number of scans per patient was also associated with Townsend deprivation quintiles (p = 0.014).</p> <p>Conclusions</p> <p>Social inequalities exist in the numbers of young people undergoing CT scans with those from deprived areas more likely to do so. This may reflect the rates of injuries in these individuals and implies that certain groups within the population may receive higher radiation doses than others due to medical procedures.</p
- …