165 research outputs found

    Deciphering the Chemical Basis of Nestmate Recognition

    Get PDF
    Social insects maintain colony cohesion by recognizing and, if necessary, discriminating against conspecifics that are not part of the colony. This recognition ability is encoded by a complex mixture of cuticular hydrocarbons (CHCs), although it is largely unclear how social insects interpret such a multifaceted signal. CHC profiles often contain several series of homologous hydrocarbons, possessing the same methyl branch position but differing in chain length (e.g., 15-methyl-pentatriacontane, 15-methyl-heptatriacontane, 15-methyl-nonatriacontane). Recent studies have revealed that within species these homologs can occur in correlated concentrations. In such cases, single compounds may convey the same information as the homologs. In this study, we used behavioral bioassays to explore how social insects perceive and interpret different hydrocarbons. We tested the aggressive response of Argentine ants, Linepithema humile, toward nest-mate CHC profiles that were augmented with one of eight synthetic hydrocarbons that differed in branch position, chain length, or both. We found that Argentine ants showed similar levels of aggression toward nest-mate CHC profiles augmented with compounds that had the same branch position but differed in chain length. Conversely, Argentine ants displayed different levels of aggression toward nest-mate CHC profiles augmented with compounds that had different branch positions but the same chain length. While this was true in almost all cases, one CHC we tested elicited a greater aggressive response than its homologs. Interestingly, this was the only compound that did not occur naturally in correlated concentrations with its homologs in CHC profiles. Combined, these data suggest that CHCs of a homologous series elicit the same aggressive response because they convey the same information, rather than Argentine ants being unable to discriminate between different homologs. This study contributes to our understanding of the chemical basis of nestmate recognition by showing that, similar to spoken language, the chemical language of social insects contains “synonyms,” chemicals that differ in structure, but not meaning

    Spatial Distribution of Dominant Arboreal Ants in a Malagasy Coastal Rainforest: Gaps and Presence of an Invasive Species

    Get PDF
    We conducted a survey along three belt transects located at increasing distances from the coast to determine whether a non-random arboreal ant assemblage, such as an ant mosaic, exists in the rainforest on the Masoala Peninsula, Madagascar. In most tropical rainforests, very populous colonies of territorially dominant arboreal ant species defend absolute territories distributed in a mosaic pattern. Among the 29 ant species recorded, only nine had colonies large enough to be considered potentially territorially dominant; the remaining species had smaller colonies and were considered non-dominant. Nevertheless, the null-model analyses used to examine the spatial structure of their assemblages did not reveal the existence of an ant mosaic. Inland, up to 44% of the trees were devoid of dominant arboreal ants, something not reported in other studies. While two Crematogaster species were not associated with one another, Brachymyrmex cordemoyi was positively associated with Technomyrmex albipes, which is considered an invasive species—a non-indigenous species that has an adverse ecological effect on the habitats it invades. The latter two species and Crematogaster ranavalonae were mutually exclusive. On the other hand, all of the trees in the coastal transect and at least 4 km of coast were occupied by T. albipes, and were interconnected by columns of workers. Technomyrmex albipes workers collected from different trees did not attack each other during confrontation tests, indicating that this species has formed a supercolony along the coast. Yet interspecific aggressiveness did occur between T. albipes and Crematogaster ranavalonae, a native species which is likely territorially dominant based on our intraspecific confrontation tests. These results suggest that the Masoala rainforest is threatened by a potential invasion by T. albipes, and that the penetration of this species further inland might be facilitated by the low density of native, territorially dominant arboreal ants normally able to limit its progression

    Loss of Wolbachia infection during colonisation in the invasive Argentine ant Linepithema humile

    Get PDF
    WOLBACHIA are maternally inherited bacteria, which are very common in arthropods and nematodes. Wolbachia infection may affect host reproduction through feminisation, parthenogenesis, male-killing, cytoplasmic incompatibility and increased fecundity. Previous studies showing discrepancies between the phylogenies of Wolbachia and its arthropod hosts indicate that infection is frequently lost, but the causes of symbiont extinction have so far remained elusive. Here, we report data showing that colonisation of new habitats is a possible mechanism leading to the loss of infection. The presence and prevalence of Wolbachia were studied in three native and eight introduced populations of the Argentine ant Linepithema humile. The screening shows that the symbiont is common in the three native L. humile populations analysed. In contrast, Wolbachia was detected in only one of the introduced populations. The loss of infection associated with colonisation of new habitats may result from drift (founder effect) or altered selection pressures in the new habitat. Furthermore, a molecular phylogeny based on sequences of the Wolbachia wsp gene indicates that L. humile has been infected by a single strain. Horizontal transmission of the symbiont may be important in ants as suggested by the sequence similarity of strains in the three genera Linepithema, Acromyrmex, and Solenopsis native from South and Central America

    The Evolution of Invasiveness in Garden Ants

    Get PDF
    It is unclear why some species become successful invaders whilst others fail, and whether invasive success depends on pre-adaptations already present in the native range or on characters evolving de-novo after introduction. Ants are among the worst invasive pests, with Lasius neglectus and its rapid spread through Europe and Asia as the most recent example of a pest ant that may become a global problem. Here, we present the first integrated study on behavior, morphology, population genetics, chemical recognition and parasite load of L. neglectus and its non-invasive sister species L. turcicus. We find that L. neglectus expresses the same supercolonial syndrome as other invasive ants, a social system that is characterized by mating without dispersal and large networks of cooperating nests rather than smaller mutually hostile colonies. We conclude that the invasive success of L. neglectus relies on a combination of parasite-release following introduction and pre-adaptations in mating system, body-size, queen number and recognition efficiency that evolved long before introduction. Our results challenge the notion that supercolonial organization is an inevitable consequence of low genetic variation for chemical recognition cues in small invasive founder populations. We infer that low variation and limited volatility in cuticular hydrocarbon profiles already existed in the native range in combination with low dispersal and a highly viscous population structure. Human transport to relatively disturbed urban areas thus became the decisive factor to induce parasite release, a well established general promoter of invasiveness in non-social animals and plants, but understudied in invasive social insects

    Convergent development of low-relatedness supercolonies in Myrmica ants.

    Get PDF
    Many ant species have independently evolved colony structures with multiple queens and very low relatedness among nestmate workers, but it has remained unclear whether low-relatedness kin structures can repeatedly arise in populations of the same species. Here we report a study of Danish island populations of the red ant Myrmica sulcinodis and show that it is likely that such repeated developments occur. Two microsatellite loci were used to estimate genetic differentiation (F(ST)) among three populations and nestmate relatedness within these populations. The F(ST) values were highly significant due to very different allele frequencies among the three populations with relatively few common alleles and relatively many rare alleles, possibly caused by single queen foundation and rare subsequent immigration. Given the isolation of the islands and the low investment in reproduction, we infer that each of the populations was most likely established by a single queen, even though all three extant populations now have within-colony relatedness 95%), and the genetic differentiation of nests showed a significantly positive correlation with the distance between them. Both male-biased sex-ratio and genetic viscosity are expected characteristics of populations where queens have very local dispersal and where new colonies are initiated through nest-budding. Based on a comparison with other M. sulcinodis populations we hypothesise a distinct succession of population types and suggest that this may be a possible pathway to unicoloniality, ie, development towards a complete lack of colony kin structure and unrelated nestmate workers

    Genome size evolution at the speciation level: The cryptic species complex Brachionus plicatilis (Rotifera)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies on genome size variation in animals are rarely done at lower taxonomic levels, e.g., slightly above/below the species level. Yet, such variation might provide important clues on the tempo and mode of genome size evolution. In this study we used the flow-cytometry method to study the evolution of genome size in the rotifer <it>Brachionus plicatilis</it>, a cryptic species complex consisting of at least 14 closely related species.</p> <p>Results</p> <p>We found an unexpectedly high variation in this species complex, with genome sizes ranging approximately seven-fold (haploid '1C' genome sizes: 0.056-0.416 pg). Most of this variation (67%) could be ascribed to the major clades of the species complex, i.e. clades that are well separated according to most species definitions. However, we also found substantial variation (32%) at lower taxonomic levels - within and among genealogical species - and, interestingly, among species pairs that are not completely reproductively isolated. In one genealogical species, called <it>B</it>. 'Austria', we found greatly enlarged genome sizes that could roughly be approximated as multiples of the genomes of its closest relatives, which suggests that whole-genome duplications have occurred early during separation of this lineage. Overall, genome size was significantly correlated to egg size and body size, even though the latter became non-significant after controlling for phylogenetic non-independence.</p> <p>Conclusions</p> <p>Our study suggests that substantial genome size variation can build up early during speciation, potentially even among isolated populations. An alternative, but not mutually exclusive interpretation might be that reproductive isolation tends to build up unusually slow in this species complex.</p

    No Evolutionary Shift in the Mating System of North American Ambrosia artemisiifolia (Asteraceae) Following Its Introduction to China

    Get PDF
    The mating system plays a key role during the process of plant invasion. Contemporary evolution of uniparental reproduction (selfing or asexuality) can relieve the challenges of mate limitation in colonizing populations by providing reproductive assurance. Here we examined aspects of the genetics of colonization in Ambrosia artemisiifolia, a North American native that is invasive in China. This species has been found to possess a strong self-incompatibility system and have high outcrossing rates in North America and we examined whether there has been an evolutionary shift towards the dependence on selfing in the introduced range. Specifically, we estimated outcrossing rates in one native and five invasive populations and compared levels of genetic diversity between North America and China. Based on six microsatellite loci we found that, like the native North American population, all five Chinese populations possessed a completely outcrossing mating system. The estimates of paternity correlations were low, ranging from 0.028–0.122, which suggests that populations possessed ∼8–36 pollen donor parents contributing to each maternal plant in the invasive populations. High levels of genetic diversity for both native and invasive populations were found with the unbiased estimate of gene diversity ranging from 0.262–0.289 for both geographic ranges based on AFLP markers. Our results demonstrate that there has been no evolutionary shift from outcrossing to selfing during A. artemisiifolia's invasion of China. Furthermore, high levels of genetic variation in North America and China indicate that there has been no erosion of genetic variance due to a bottleneck during the introduction process. We suggest that the successful invasion of A. artemisiifolia into Asia was facilitated by repeated introductions from multiple source populations in the native range creating a diverse gene pool within Chinese populations

    Genetic Networking of the Bemisia tabaci Cryptic Species Complex Reveals Pattern of Biological Invasions

    Get PDF
    BACKGROUND: A challenge within the context of cryptic species is the delimitation of individual species within the complex. Statistical parsimony network analytics offers the opportunity to explore limits in situations where there are insufficient species-specific morphological characters to separate taxa. The results also enable us to explore the spread in taxa that have invaded globally. METHODOLOGY/PRINCIPAL FINDINGS: Using a 657 bp portion of mitochondrial cytochrome oxidase 1 from 352 unique haplotypes belonging to the Bemisia tabaci cryptic species complex, the analysis revealed 28 networks plus 7 unconnected individual haplotypes. Of the networks, 24 corresponded to the putative species identified using the rule set devised by Dinsdale et al. (2010). Only two species proposed in Dinsdale et al. (2010) departed substantially from the structure suggested by the analysis. The analysis of the two invasive members of the complex, Mediterranean (MED) and Middle East - Asia Minor 1 (MEAM1), showed that in both cases only a small number of haplotypes represent the majority that have spread beyond the home range; one MEAM1 and three MED haplotypes account for >80% of the GenBank records. Israel is a possible source of the globally invasive MEAM1 whereas MED has two possible sources. The first is the eastern Mediterranean which has invaded only the USA, primarily Florida and to a lesser extent California. The second are western Mediterranean haplotypes that have spread to the USA, Asia and South America. The structure for MED supports two home range distributions, a Sub-Saharan range and a Mediterranean range. The MEAM1 network supports the Middle East - Asia Minor region. CONCLUSION/SIGNIFICANCE: The network analyses show a high level of congruence with the species identified in a previous phylogenetic analysis. The analysis of the two globally invasive members of the complex support the view that global invasion often involve very small portions of the available genetic diversity
    corecore