89 research outputs found

    Assessment of variation in bacterial composition among microhabitats in a mangrove environment using DGGE fingerprints and barcoded pyrosequencing

    Get PDF
    Here, we use DGGE fingerprinting and barcoded pyrosequencing data, at six cut-off levels (85-100%), of all bacteria, Alphaproteobacteria and Betaproteobacteria to assess composition in the rhizosphere of nursery plants and nursery-raised transplants, native plants and bulk sediment in a mangrove habitat. When comparing compositional data based on DGGE fingerprinting and barcoded pyrosequencing at different cut-off levels, all revealed highly significant differences in composition among microhabitats. Procrustes superimposition revealed that ordination results using cut-off levels from 85-100% and DGGE fingerprint data were highly congruent with the standard 97% cut-off level. The various approaches revealed a primary gradient in composition from nursery to mangrove samples. The affinity between the nursery and transplants was greatest when using Betaproteobacteria followed by Alphaproteobacteria data. There was a distinct secondary gradient in composition from transplants to bulk sediment with native plants intermediate, which was most prevalent using all bacteria at intermediate cut-off levels (92-97%). Our results show that PCR-DGGE provides a robust and cost effective exploratory approach and is effective in distinguishing among a priori defined groups.This study was funded by the Deutsche Forschungsgemeinschaft SM59/4-1 and 4-2 (www.dfg.de/en/index.jsp), FAPERJ-Brazil (www.faperj.br), Centre for Environmental and Marine Studies (CESAM, Portugal) (www.cesam.ua.pt), Foundation for Science and Technology (FCT, Portugal) PTDC/AAC-CLI/107916/2008 (http://alfa.fct.mctes.pt) and the European Regional Development Fund (ERDF) through COMPETE- (FCOMP-01-0124-FEDER-008657). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.publishe

    Emiliania huxleyi: bacteria interactions under increasing CO2 concentrations

    Get PDF
    The interactions established between marine microbes, namely phytoplankton–bacteria, are key to the balance of organic matter export to depth and recycling in the surface ocean. Still, their role in the response of phytoplankton to rising CO2 concentrations is poorly understood. Here, we show that the response of the cosmopolitan Emiliania huxleyi (E. huxleyi) to increasing CO2 is affected by the coexistence with bacteria. Specifically, decreased growth rate of E. huxleyi at enhanced CO2 concentrations was amplified in the bloom phase (potentially also related to nutrient concentrations) and with the coexistence with Idiomarina abyssalis (I. abyssalis) and Brachybacterium sp. In addition, enhanced CO2 concentrations also affected E. huxleyi’s cellular content estimates, increasing organic and decreasing inorganic carbon, in the presence of I. abyssalis, but not Brachybacterium sp. At the same time, the bacterial isolates only survived in coexistence with E. huxleyi, but exclusively I. abyssalis at present CO2 concentrations. Bacterial species or group-specific responses to the projected CO2 rise, together with the concomitant effect on E. huxleyi, might impact the balance between the microbial loop and the export of organic matter, with consequences for atmospheric carbon dioxide

    Multitrophic Interaction in the Rhizosphere of Maize: Root Feeding of Western Corn Rootworm Larvae Alters the Microbial Community Composition

    Get PDF
    BACKGROUND: Larvae of the Western Corn Rootworm (WCR) feeding on maize roots cause heavy economical losses in the US and in Europe. New or adapted pest management strategies urgently require a better understanding of the multitrophic interaction in the rhizosphere. This study aimed to investigate the effect of WCR root feeding on the microbial communities colonizing the maize rhizosphere. METHODOLOGY/PRINCIPAL FINDINGS: In a greenhouse experiment, maize lines KWS13, KWS14, KWS15 and MON88017 were grown in three different soil types in presence and in absence of WCR larvae. Bacterial and fungal community structures were analyzed by denaturing gradient gel electrophoresis (DGGE) of the 16S rRNA gene and ITS fragments, PCR amplified from the total rhizosphere community DNA. DGGE bands with increased intensity were excised from the gel, cloned and sequenced in order to identify specific bacteria responding to WCR larval feeding. DGGE fingerprints showed that the soil type and the maize line influenced the fungal and bacterial communities inhabiting the maize rhizosphere. WCR larval feeding affected the rhiyosphere microbial populations in a soil type and maize line dependent manner. DGGE band sequencing revealed an increased abundance of Acinetobacter calcoaceticus in the rhizosphere of several maize lines in all soil types upon WCR larval feeding. CONCLUSION/SIGNIFICANCE: The effects of both rhizosphere and WCR larval feeding seemed to be stronger on bacterial communities than on fungi. Bacterial and fungal community shifts in response to larval feeding were most likely due to changes of root exudation patterns. The increased abundance of A. calcoaceticus suggested that phenolic compounds were released upon WCR wounding

    Compositional analysis of bacterial communities in seawater, sediment, and sponges in the Misool coral reef system, Indonesia

    Get PDF
    Sponge species have been deemed high microbial abundance (HMA) or low microbial abundance (LMA) based on the composition and abundance of their microbial symbionts. In the present study, we evaluated the richness and composition of bacterial communities associated with one HMA sponge (Xestospongia testudinaria; Demospongiae: Haplosclerida: Petrosiidae), one LMA sponge (Stylissa carteri; Demospongiae: Scopalinida - Scopalinidae), and one sponge with a hitherto unknown microbial community (Aaptos suberitoides; Demospongiae: Suberitida: Suberitidae) inhabiting the Misool coral reef system in the West Papua province of Indonesia. The bacterial communities of these sponge species were also compared with seawater and sediment bacterial communities from the same coastal coral reef habitat. Using a 16S rRNA gene barcoded pyrosequencing approach, we showed that the most abundant phylum overall was Proteobacteria. The biotope (sponge species, sediment or seawater) explained almost 84% of the variation in bacterial composition with highly significant differences in composition among biotopes and a clear separation between bacterial communities from seawater and S. carteri; X. testudinaria and A. suberitoides and sediment. The Chloroflexi classes SAR202 and Anaerolineae were most abundant in A. suberitoides and X. testudinaria and both of these species shared several OTUs that were largely absent in the remaining biotopes. This suggests that A. suberitoides is a HMA sponge. Although similar, the bacterial communities of S. carteri and seawater were compositionally distinct. These results confirm compositional differences between sponge and non-sponge biotopes and between HMA and LMA sponges.publishe

    The Microbiome of Brazilian Mangrove Sediments as Revealed by Metagenomics

    Get PDF
    Here we embark in a deep metagenomic survey that revealed the taxonomic and potential metabolic pathways aspects of mangrove sediment microbiology. The extraction of DNA from sediment samples and the direct application of pyrosequencing resulted in approximately 215 Mb of data from four distinct mangrove areas (BrMgv01 to 04) in Brazil. The taxonomic approaches applied revealed the dominance of Deltaproteobacteria and Gammaproteobacteria in the samples. Paired statistical analysis showed higher proportions of specific taxonomic groups in each dataset. The metabolic reconstruction indicated the possible occurrence of processes modulated by the prevailing conditions found in mangrove sediments. In terms of carbon cycling, the sequences indicated the prevalence of genes involved in the metabolism of methane, formaldehyde, and carbon dioxide. With respect to the nitrogen cycle, evidence for sequences associated with dissimilatory reduction of nitrate, nitrogen immobilization, and denitrification was detected. Sequences related to the production of adenylsulfate, sulfite, and H2S were relevant to the sulphur cycle. These data indicate that the microbial core involved in methane, nitrogen, and sulphur metabolism consists mainly of Burkholderiaceae, Planctomycetaceae, Rhodobacteraceae, and Desulfobacteraceae. Comparison of our data to datasets from soil and sea samples resulted in the allotment of the mangrove sediments between those samples. The results of this study add valuable data about the composition of microbial communities in mangroves and also shed light on possible transformations promoted by microbial organisms in mangrove sediments

    PAH mineralization and bacterial organotolerance in surface sediments of the Charleston Harbor estuary

    Get PDF
    Semi-volatile organic compounds (SVOCs) in estuarine waters can adversely affect biota but watershed sources can be difficult to identify because these compounds are transient. Natural bacterial assemblages may respond to chronic, episodic exposure to SVOCs through selection of more organotolerant bacterial communities. We measured bacterial production, organotolerance and polycyclic aromatic hydrocarbon (PAH) mineralization in Charleston Harbor and compared surface sediment from stations near a known, permitted SVOC outfall (pulp mill effluent) to that from more pristine stations. Naphthalene additions inhibited an average of 77% of bacterial metabolism in sediments from the more pristine site (Wando River). Production in sediments nearest the outfall was only inhibited an average of 9% and in some cases, was actually stimulated. In general, the stations with the highest rates of bacterial production also were among those with the highest rates of PAH mineralization. This suggests that the capacity to mineralize PAH carbon is a common feature amongst the bacterial assemblage in these estuarine sediments and could account for an average of 5.6% of bacterial carbon demand (in terms of production) in the summer, 3.3% in the spring (April) and only 1.2% in winter (December)

    Phylogenetically and spatially close marine sponges harbour divergent bacterial communities

    Get PDF
    Recent studies have unravelled the diversity of sponge-associated bacteria that may play essential roles in sponge health and metabolism. Nevertheless, our understanding of this microbiota remains limited to a few host species found in restricted geographical localities, and the extent to which the sponge host determines the composition of its own microbiome remains a matter of debate. We address bacterial abundance and diversity of two temperate marine sponges belonging to the Irciniidae family - Sarcotragus spinosulus and Ircinia variabilis – in the Northeast Atlantic. Epifluorescence microscopy revealed that S. spinosulus hosted significantly more prokaryotic cells than I. variabilis and that prokaryotic abundance in both species was about 4 orders of magnitude higher than in seawater. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) profiles of S. spinosulus and I. variabilis differed markedly from each other – with higher number of ribotypes observed in S. spinosulus – and from those of seawater. Four PCR-DGGE bands, two specific to S. spinosulus, one specific to I. variabilis, and one present in both sponge species, affiliated with an uncultured sponge-specific phylogenetic cluster in the order Acidimicrobiales (Actinobacteria). Two PCR-DGGE bands present exclusively in S. spinosulus fingerprints affiliated with one sponge-specific phylogenetic cluster in the phylum Chloroflexi and with sponge-derived sequences in the order Chromatiales (Gammaproteobacteria), respectively. One Alphaproteobacteria band specific to S. spinosulus was placed in an uncultured sponge-specific phylogenetic cluster with a close relationship to the genus Rhodovulum. Our results confirm the hypothesized host-specific composition of bacterial communities between phylogenetically and spatially close sponge species in the Irciniidae family, with S. spinosulus displaying higher bacterial community diversity and distinctiveness than I. variabilis. These findings suggest a pivotal host-driven effect on the shape of the marine sponge microbiome, bearing implications to our current understanding of the distribution of microbial genetic resources in the marine realm.This work was financed by the Portuguese Foundation for Science and Technology (FCT - http://www.fct.pt) through the research project PTDC/MAR/101431/2008. CCPH has a PhD fellowship granted by FCT (Grant No. SFRH/BD/60873/2009). JRX’s research is funded by a FCT postdoctoral fellowship (grant no. SFRH/BPD/62946/2009). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
    • …
    corecore