109 research outputs found

    Neural network control of a neural prosthesis to assist with gait for people with muscle weakness

    Get PDF
    Studies show that about 1.7% of the US population live with some sort of paralysis which can reduce muscle function. Functional electrical stimulation (FES) has been widely used in the biomedical field to increase the functionality of atrophied muscles. The goal of this research was to design, build, and test a neural prosthesis that uses artificial electrical stimulation to improve gait in people with muscle weakness. The overall objectives of this project were to quantify the gait tracking performance of the 3 rd generation prosthesis, and to develop the next generation model by implementing an artificial neural network that automatically controlled the electrical muscle stimulator. The 4th generation prosthesis was programmed to use sensor feedback from three inertial measurement units (IMUs) and four force sensitive resistors (FSRs) to predict the correct stimulation time. The IMUs were used to keep track of the leg movement during gait and the FSRs were used to track the force exerted by the foot at different stages of the gait cycle. Results showed that it was possible to program a highly accurate neural network from the received data of the sensors. After implementing the neural network and the stimulator device to the prosthesis, it was observed that the network correctly predicted when muscle contraction was required and was able to automatically send the stimulation signal

    Extremely long quasiparticle spin lifetimes in superconducting aluminium using MgO tunnel spin injectors

    Full text link
    There has been an intense search in recent years for long-lived spin-polarized carriers for spintronic and quantum-computing devices. Here we report that spin polarized quasi-particles in superconducting aluminum layers have surprisingly long spin-lifetimes, nearly a million times longer than in their normal state. The lifetime is determined from the suppression of the aluminum's superconductivity resulting from the accumulation of spin polarized carriers in the aluminum layer using tunnel spin injectors. A Hanle effect, observed in the presence of small in-plane orthogonal fields, is shown to be quantitatively consistent with the presence of long-lived spin polarized quasi-particles. Our experiments show that the superconducting state can be significantly modified by small electric currents, much smaller than the critical current, which is potentially useful for devices involving superconducting qubits

    Infection Parameters in the Sand Fly Vector That Predict Transmission of Leishmania major

    Get PDF
    To identify parameters of Leishmania infection within a population of infected sand flies that reliably predict subsequent transmission to the mammalian host, we sampled groups of infected flies and compared infection intensity and degree of metacyclogenesis with the frequency of transmission. The percentage of parasites within the midgut that were metacyclic promastigotes had the highest correlation with the frequency of transmission. Meta-analysis of multiple transmission experiments allowed us to establish a percent-metacyclic “cutoff” value that predicted transmission competence. Sand fly infections initiated with variable doses of parasites resulted in correspondingly altered percentages of metacyclic promastigotes, resulting in altered transmission frequency and disease severity. Lastly, alteration of sand fly oviposition status and environmental conditions at the time of transmission also influenced transmission frequency. These observations have implications for transmission of Leishmania by the sand fly vector in both the laboratory and in nature, including how the number of organisms acquired by the sand fly from an infection reservoir may influence the clinical outcome of infection following transmission by bite

    'Riots engulfed the city':an experimental study investigating the legitimating effects of fire metaphors in discourses of disorder

    Get PDF
    In Cognitive Linguistic Critical Discourse Studies (CL-CDS), metaphor is identified as a key index of ideology and an important device in the legitimation of social action. From this perspective, metaphor is a cognitive-semiotic operation, invoked by metaphorical expressions in discourse, in which a source frame is mobilised to provide a template for sense-making inside a target frame, leading to particular framing effects. However, the extent to which metaphors in discourse genuinely activate an alternative frame and thereby achieve framing effects has recently been subject to question. Amid calls for more empirical forms of analysis in Critical Discourse Studies, the paper reports two experiments testing the legitimating framing effects of fire metaphors in discourses of disorder. Results show that images of fire and fire metaphors in the absence of competing images facilitate support for police use of water cannon in response to social unrest. The study not only justifies attention to metaphor in CL-CDS but similar effects across semiotic modalities are interpreted as evidence in support of simulation-based theories of metaphor

    KSAC, a Defined Leishmania Antigen, plus Adjuvant Protects against the Virulence of L. major Transmitted by Its Natural Vector Phlebotomus duboscqi

    Get PDF
    Leishmaniasis is a neglected disease caused by the Leishmania parasite and transmitted by the bite of an infective sand fly. Despite the importance of this disease there is no vaccine available for humans. Studies have shown that vector-transmitted infections are more virulent, promoting parasite establishment and abrogating protection observed against needle-injected parasites in vaccinated mice. KSAC and L110f, derived from Leishmania-based polyproteins, protected mice against the needle-injected parasites. Here, we tested the two molecules for their capacity to protect mice against cutaneous leishmaniasis transmitted by an infective sand fly. Our results show that KSAC, but not L110f, confers protection against Leishmania transmitted by sand fly bites where protection was correlated to a strong immune response to Leishmania antigens by memory T cells before and after sand fly transmission of the parasite. This is the first report of a Leishmania-based vaccine that confers protection against a virulent sand fly challenge. Our results support the importance of screening Leishmania vaccine candidates using infective sand flies before moving forward with the costly steps of vaccine development

    Seasonality and Prevalence of Leishmania major Infection in Phlebotomus duboscqi Neveu-Lemaire from Two Neighboring Villages in Central Mali

    Get PDF
    Phlebotomus duboscqi is the principle vector of Leishmania major, the causative agent of cutaneous leishmaniasis (CL), in West Africa and is the suspected vector in Mali. Although found throughout the country the seasonality and infection prevalence of P. duboscqi has not been established in Mali. We conducted a three year study in two neighboring villages, Kemena and Sougoula, in Central Mali, an area with a leishmanin skin test positivity of up to 45%. During the first year, we evaluated the overall diversity of sand flies. Of 18,595 flies collected, 12,952 (69%) belonged to 12 species of Sergentomyia and 5,643 (31%) to two species of the genus Phlebotomus, P. duboscqi and P. rodhaini. Of those, P. duboscqi was the most abundant, representing 99% of the collected Phlebotomus species. P. duboscqi was the primary sand fly collected inside dwellings, mostly by resting site collection. The seasonality and infection prevalence of P. duboscqi was monitored over two consecutive years. P. dubsocqi were collected throughout the year. Using a quasi-Poisson model we observed a significant annual (year 1 to year 2), seasonal (monthly) and village effect (Kemena versus Sougoula) on the number of collected P. duboscqi. The significant seasonal effect of the quasi-Poisson model reflects two seasonal collection peaks in May-July and October-November. The infection status of pooled P. duboscqi females was determined by PCR. The infection prevalence of pooled females, estimated using the maximum likelihood estimate of prevalence, was 2.7% in Kemena and Sougoula. Based on the PCR product size, L. major was identified as the only species found in flies from the two villages. This was confirmed by sequence alignment of a subset of PCR products from infected flies to known Leishmania species, incriminating P. duboscqi as the vector of CL in Mali

    Immunity to Lutzomyia intermedia Saliva Modulates the Inflammatory Environment Induced by Leishmania braziliensis

    Get PDF
    Transmission of Leishmania parasites occurs during blood feeding, when infected female sand flies inject humans with parasites and saliva. Chemokines and cytokines are secreted proteins that regulate the initial immune responses and have the potential of attracting and activating cells. Herein, we studied the expression of such molecules and the cellular recruitment induced by salivary proteins of the Lutzomyia intermedia sand fly. Of note, Lutzomyia intermedia is the main vector of Leishmania braziliensis, a parasite species that causes cutaneous leishmaniasis, a disease associated with the development of destructive skin lesions that can be fatal if left untreated. We observed that L. intermedia salivary proteins induce a potent cellular recruitment and modify the expression profile of chemokines and cytokines in mice. More importantly, in mice previously immunized with L. intermedia saliva, the alteration in the initial inflammatory response was even more pronounced, in terms of the number of cells recruited and in terms of gene expression pattern. These findings indicate that an existing immunity to L. intermedia sand fly induces an important modulation in the initial immune response that may, in turn, promote parasite multiplication, leading to the development of cutaneous leishmaniasis

    BluePort: A Platform to Study the Eosinophilic Response of Mice to the Bite of a Vector of Leishmania Parasites, Lutzomyia longipalpis Sand Flies

    Get PDF
    transmission in residents of endemic areas has been attributed to the acquisition of immunity to sand fly salivary proteins. One theoretical way to accelerate the acquisition of this immunity is to increase the density of antigen-presenting cells at the sand fly bite site. Here we describe a novel tissue platform that can be used for this purpose. sand flies. Results presented indicate that a shift in the inflammatory response, from neutrophilic to eosinophilic, is the main histopathological feature associated with the immunity acquired through repeated exposure to the bite of sand flies, and that the BluePort tissue compartment could be used to accelerate this process. In addition, changes observed inside the BluePort parenchyma indicate that it could be used to study complex immunobiological processes, and to develop ectopic secondary lymphoid structures.Understanding the characteristics of the dermal response to the bite of sand flies is a critical element of strategies to control leishmaniasis using vaccines that target salivary proteins. Finding that dermal eosinophilia is such a prominent component of the anti-salivary immunity induced by repeated exposure to sand fly bites raises one important consideration: how to avoid the immunological conflict derived from a protective Th2-driven immunity directed to sand fly saliva with a protective Th1-driven immunity directed to the parasite. The BluePort platform is an ideal tool to address experimentally this conundrum

    Fcγ Receptors in Solid Organ Transplantation.

    Get PDF
    In the current era, one of the major factors limiting graft survival is chronic antibody-mediated rejection (ABMR), whilst patient survival is impacted by the effects of immunosuppression on susceptibility to infection, malignancy and atherosclerosis. IgG antibodies play a role in all of these processes, and many of their cellular effects are mediated by Fc gamma receptors (FcγRs). These surface receptors are expressed by most immune cells, including B cells, natural killer cells, dendritic cells and macrophages. Genetic variation in FCGR genes is likely to affect susceptibility to ABMR and to modulate the physiological functions of IgG. In this review, we discuss the potential role played by FcγRs in determining outcomes in solid organ transplantation, and how genetic polymorphisms in these receptors may contribute to variations in transplant outcome.MRC is supported by the NIHR Cambridge BRC, the NIHR Blood and Transplant Research Unit (Cambridge) and by a Medical Research Council New Investigator Grant (MR/N024907/1).This is the final version of the article. It first appeared from Springer via https://doi.org/10.1007/s40472-016-0116-
    corecore